Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation

人工智能 卷积神经网络 分割 计算机科学 模式识别(心理学) 深度学习 假阳性悖论 编码器 图像分割 人工神经网络 试验装置 计算机视觉 操作系统
作者
Ümit Budak,Yanhui Guo,Erkan Tanyıldızı,Abdulkadir Şengür
出处
期刊:Medical Hypotheses [Elsevier]
卷期号:134: 109431-109431 被引量:126
标识
DOI:10.1016/j.mehy.2019.109431
摘要

Liver and hepatic tumor segmentation remains a challenging problem in Computer Tomography (CT) images analysis due to its shape variation and vague boundary. The general hypothesis says that deep learning methods produce improved results on medical image segmentation. This paper formulates the segmentation of liver tumor in CT abdominal images as a classification problem, and then solves it using a cascaded classifier framework based on deep convolutional neural networks. Two deep encoder-decoder convolutional neural networks (EDCNN) were constructed and trained to cascade segments of both the liver and lesions in CT images with limited image quantity. In other words, an EDCNN segments the liver image as the input for the training of a second EDCNN. The second EDCNN then segments the tumor regions within the liver ROI regions as predicted by the first EDCNN. Segmenting the hepatic tumor inside the liver ROI also significantly reduces false-positives. The proposed model was then tested using a public dataset (3DIRCADb), and several metrics were used in order to quantitatively evaluate its performance. The proposed method produced an average DICE score of 95.22% for the test set of CT images. The proposed method was then compared with some of the existing methods. The experimental results demonstrated that the proposed EDCNN achieved improved performance in segmentation accuracy over some existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
任侠传完成签到,获得积分10
刚刚
科目三应助真洋子哈采纳,获得10
1秒前
阳光的梦寒完成签到 ,获得积分10
1秒前
1秒前
dalibaba发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
郝磊完成签到 ,获得积分10
3秒前
李李完成签到,获得积分10
4秒前
cbz发布了新的文献求助10
4秒前
orixero应助坚强的笑天采纳,获得10
4秒前
star发布了新的文献求助10
4秒前
猪猪hero发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
科研通AI6应助羞涩的寒松采纳,获得10
4秒前
云槿完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
zhihe完成签到,获得积分10
6秒前
科研通AI6应助时尚的依萱采纳,获得10
7秒前
8秒前
GUET完成签到,获得积分20
8秒前
8秒前
DanniSun完成签到,获得积分10
8秒前
loung完成签到,获得积分10
8秒前
sfc999发布了新的文献求助10
9秒前
eosin完成签到,获得积分20
9秒前
10秒前
奋斗书白发布了新的文献求助10
10秒前
33097完成签到,获得积分10
10秒前
FashionBoy应助北北北采纳,获得10
10秒前
wangqing发布了新的文献求助20
10秒前
ding应助Sky我的小清新采纳,获得10
11秒前
wxy发布了新的文献求助10
12秒前
Jessie完成签到 ,获得积分10
12秒前
12秒前
Str0n发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461104
求助须知:如何正确求助?哪些是违规求助? 4566154
关于积分的说明 14303688
捐赠科研通 4491806
什么是DOI,文献DOI怎么找? 2460476
邀请新用户注册赠送积分活动 1449797
关于科研通互助平台的介绍 1425561