Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation

人工智能 卷积神经网络 分割 计算机科学 模式识别(心理学) 深度学习 假阳性悖论 编码器 图像分割 人工神经网络 试验装置 计算机视觉 操作系统
作者
Ümit Budak,Yanhui Guo,Erkan Tanyıldızı,Abdulkadir Şengür
出处
期刊:Medical Hypotheses [Elsevier]
卷期号:134: 109431-109431 被引量:126
标识
DOI:10.1016/j.mehy.2019.109431
摘要

Liver and hepatic tumor segmentation remains a challenging problem in Computer Tomography (CT) images analysis due to its shape variation and vague boundary. The general hypothesis says that deep learning methods produce improved results on medical image segmentation. This paper formulates the segmentation of liver tumor in CT abdominal images as a classification problem, and then solves it using a cascaded classifier framework based on deep convolutional neural networks. Two deep encoder-decoder convolutional neural networks (EDCNN) were constructed and trained to cascade segments of both the liver and lesions in CT images with limited image quantity. In other words, an EDCNN segments the liver image as the input for the training of a second EDCNN. The second EDCNN then segments the tumor regions within the liver ROI regions as predicted by the first EDCNN. Segmenting the hepatic tumor inside the liver ROI also significantly reduces false-positives. The proposed model was then tested using a public dataset (3DIRCADb), and several metrics were used in order to quantitatively evaluate its performance. The proposed method produced an average DICE score of 95.22% for the test set of CT images. The proposed method was then compared with some of the existing methods. The experimental results demonstrated that the proposed EDCNN achieved improved performance in segmentation accuracy over some existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊完成签到,获得积分10
刚刚
刚刚
1秒前
牛马完成签到,获得积分10
1秒前
Owen应助Judy采纳,获得10
1秒前
彭于晏应助dian采纳,获得10
2秒前
4秒前
4秒前
qingfengnai完成签到,获得积分10
4秒前
5秒前
李震完成签到,获得积分10
5秒前
5秒前
5秒前
Akim应助Alan采纳,获得10
5秒前
证明发布了新的文献求助10
5秒前
FRANKFANG完成签到,获得积分10
6秒前
6秒前
Akim应助呵呜哎辉采纳,获得10
6秒前
6秒前
合适的平安完成签到,获得积分10
7秒前
没有昵称完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
就是我发布了新的文献求助10
8秒前
酷波er应助Nano采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
田哲完成签到 ,获得积分10
8秒前
胖箭鱼发布了新的文献求助10
10秒前
10秒前
hearz发布了新的文献求助10
11秒前
帅气航空发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
屋顶橙子味完成签到 ,获得积分10
11秒前
doctorshg完成签到,获得积分10
11秒前
王艺霖发布了新的文献求助10
13秒前
充电宝应助宇文半邪采纳,获得10
13秒前
晴Amber完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233