Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation

人工智能 卷积神经网络 分割 计算机科学 模式识别(心理学) 深度学习 假阳性悖论 编码器 图像分割 人工神经网络 试验装置 计算机视觉 操作系统
作者
Ümit Budak,Yanhui Guo,Erkan Tanyıldızı,Abdulkadir Şengür
出处
期刊:Medical Hypotheses [Elsevier]
卷期号:134: 109431-109431 被引量:126
标识
DOI:10.1016/j.mehy.2019.109431
摘要

Liver and hepatic tumor segmentation remains a challenging problem in Computer Tomography (CT) images analysis due to its shape variation and vague boundary. The general hypothesis says that deep learning methods produce improved results on medical image segmentation. This paper formulates the segmentation of liver tumor in CT abdominal images as a classification problem, and then solves it using a cascaded classifier framework based on deep convolutional neural networks. Two deep encoder-decoder convolutional neural networks (EDCNN) were constructed and trained to cascade segments of both the liver and lesions in CT images with limited image quantity. In other words, an EDCNN segments the liver image as the input for the training of a second EDCNN. The second EDCNN then segments the tumor regions within the liver ROI regions as predicted by the first EDCNN. Segmenting the hepatic tumor inside the liver ROI also significantly reduces false-positives. The proposed model was then tested using a public dataset (3DIRCADb), and several metrics were used in order to quantitatively evaluate its performance. The proposed method produced an average DICE score of 95.22% for the test set of CT images. The proposed method was then compared with some of the existing methods. The experimental results demonstrated that the proposed EDCNN achieved improved performance in segmentation accuracy over some existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助666采纳,获得50
1秒前
旺仔女士完成签到,获得积分10
1秒前
1秒前
Wellington发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
CNYDNZB发布了新的文献求助10
3秒前
3秒前
4秒前
珍兮完成签到,获得积分10
4秒前
4秒前
赘婿应助天使爱学习采纳,获得10
5秒前
cui关注了科研通微信公众号
5秒前
5秒前
我补药写论文啊呜呜呜完成签到,获得积分10
6秒前
安详夏彤发布了新的文献求助10
7秒前
张伯伦发布了新的文献求助10
7秒前
CC发布了新的文献求助20
8秒前
8秒前
9秒前
王小丽完成签到,获得积分10
9秒前
xixi发布了新的文献求助10
9秒前
10秒前
于金水发布了新的文献求助10
11秒前
开朗书本完成签到,获得积分20
11秒前
shy发布了新的文献求助10
11秒前
久香给久香的求助进行了留言
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
我真找不到应助Ephemerality采纳,获得30
16秒前
量子星尘发布了新的文献求助10
16秒前
abab小王发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
NexusExplorer应助QQQ采纳,获得10
17秒前
QLLW发布了新的文献求助10
19秒前
Ale发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663406
求助须知:如何正确求助?哪些是违规求助? 4849401
关于积分的说明 15103934
捐赠科研通 4821706
什么是DOI,文献DOI怎么找? 2580884
邀请新用户注册赠送积分活动 1535065
关于科研通互助平台的介绍 1493426