Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation

人工智能 卷积神经网络 分割 计算机科学 模式识别(心理学) 深度学习 假阳性悖论 编码器 图像分割 人工神经网络 试验装置 计算机视觉 操作系统
作者
Ümit Budak,Yanhui Guo,Erkan Tanyıldızı,Abdulkadir Şengür
出处
期刊:Medical Hypotheses [Elsevier]
卷期号:134: 109431-109431 被引量:126
标识
DOI:10.1016/j.mehy.2019.109431
摘要

Liver and hepatic tumor segmentation remains a challenging problem in Computer Tomography (CT) images analysis due to its shape variation and vague boundary. The general hypothesis says that deep learning methods produce improved results on medical image segmentation. This paper formulates the segmentation of liver tumor in CT abdominal images as a classification problem, and then solves it using a cascaded classifier framework based on deep convolutional neural networks. Two deep encoder-decoder convolutional neural networks (EDCNN) were constructed and trained to cascade segments of both the liver and lesions in CT images with limited image quantity. In other words, an EDCNN segments the liver image as the input for the training of a second EDCNN. The second EDCNN then segments the tumor regions within the liver ROI regions as predicted by the first EDCNN. Segmenting the hepatic tumor inside the liver ROI also significantly reduces false-positives. The proposed model was then tested using a public dataset (3DIRCADb), and several metrics were used in order to quantitatively evaluate its performance. The proposed method produced an average DICE score of 95.22% for the test set of CT images. The proposed method was then compared with some of the existing methods. The experimental results demonstrated that the proposed EDCNN achieved improved performance in segmentation accuracy over some existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jxm完成签到,获得积分10
3秒前
3秒前
3秒前
古月完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Lucas应助aa采纳,获得10
5秒前
6秒前
DONG发布了新的文献求助10
7秒前
彬彬完成签到 ,获得积分10
8秒前
jxm发布了新的文献求助10
8秒前
xueyi_102938发布了新的文献求助10
9秒前
10秒前
浮游应助云上初感采纳,获得10
10秒前
infinite完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
way完成签到,获得积分10
15秒前
charih完成签到 ,获得积分10
16秒前
17秒前
归尘发布了新的文献求助10
18秒前
华仔应助明理的依柔采纳,获得10
19秒前
20秒前
野性的曼香完成签到,获得积分10
20秒前
争气完成签到,获得积分10
21秒前
正直听白完成签到,获得积分10
21秒前
cdh发布了新的文献求助10
23秒前
24秒前
aa发布了新的文献求助10
25秒前
善学以致用应助雨竹采纳,获得10
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
cdh完成签到,获得积分10
29秒前
醉意拥桃枝完成签到 ,获得积分10
29秒前
风笛完成签到,获得积分10
31秒前
32秒前
朴实海亦完成签到,获得积分10
33秒前
DduYy完成签到,获得积分10
35秒前
iris2333发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419