已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparative Analysis of Keyframe Extraction Techniques for Video Summarization

自动汇总 计算机科学 人工智能 帧(网络) 选择(遗传算法) 集合(抽象数据类型) 聚类分析 对象(语法) 视频跟踪 计算机视觉 模式识别(心理学) 电信 程序设计语言
作者
Vishal Parikh,Jay Mehta,Shah Saumyaa,Priyanka Sharma
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:14 (9): 2761-2771
标识
DOI:10.2174/2666255813999200710131444
摘要

Background: With the technological advancement, the quality of life of a human were improved. Also with the technological advancement large amount of data were produced by human. The data is in the forms of text, images and videos. Hence there is a need for significant efforts and means of devising methodologies for analyzing and summarizing them to manage with the space constraints. Video summaries can be generated either by keyframes or by skim/shot. The keyframe extraction is done based on deep learning based object detection techniques. Various object detection algorithms have been reviewed for generating and selecting the best possible frames as keyframes. A set of frames were extracted out of the original video sequence and based on the technique used, one or more frames of the set are decided as a keyframe, which then becomes the part of the summarized video. The following paper discusses the selection of various keyframe extraction techniques in detail. Methods : The research paper is focused at summary generation for office surveillance videos. The major focus for the summary generation is based on various keyframe extraction techniques. For the same various training models like Mobilenet, SSD, and YOLO were used. A comparative analysis of the efficiency for the same showed YOLO giving better performance as compared to the others. Keyframe selection techniques like sufficient content change, maximum frame coverage, minimum correlation, curve simplification, and clustering based on human presence in the frame have been implemented. Results: Variable and fixed length video summaries were generated and analyzed for each keyframe selection techniques for office surveillance videos. The analysis shows that he output video obtained after using the Clustering and the Curve Simplification approaches is compressed to half the size of the actual video but requires considerably less storage space. The technique depending on the change of frame content between consecutive frames for keyframe selection produces the best output for office room scenarios. The technique depending on frame content between consecutive frames for keyframe selection produces the best output for office surveillance videos. Conclusion: In this paper, we discussed the process of generating a synopsis of a video to highlight the important portions and discard the trivial and redundant parts. First, we have described various object detection algorithms like YOLO and SSD, used in conjunction with neural networks like MobileNet to obtain the probabilistic score of an object that is present in the video. These algorithms generate the probability of a person being a part of the image, for every frame in the input video. The results of object detection are passed to keyframe extraction algorithms to obtain the summarized video. From our comparative analysis for keyframe selection techniques for office videos will help in determining which keyframe selection technique is preferable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏时安发布了新的文献求助10
1秒前
哈密哈密完成签到,获得积分10
2秒前
小吃惑发布了新的文献求助10
3秒前
dpp发布了新的文献求助10
3秒前
4秒前
5秒前
田様应助kento采纳,获得10
7秒前
carm小蛋黄完成签到,获得积分20
7秒前
称心不尤完成签到 ,获得积分10
7秒前
shy关注了科研通微信公众号
8秒前
Jes发布了新的文献求助10
8秒前
科研星发布了新的文献求助10
9秒前
小李在哪儿完成签到 ,获得积分10
9秒前
10秒前
dpp完成签到,获得积分10
10秒前
10秒前
carm小蛋黄发布了新的文献求助10
11秒前
嗷嗷发布了新的文献求助10
11秒前
11秒前
15秒前
15秒前
emeqwq完成签到,获得积分10
16秒前
LYH发布了新的文献求助10
18秒前
苗苗完成签到,获得积分20
18秒前
王逗逗发布了新的文献求助20
18秒前
19秒前
22秒前
sukiwa7发布了新的文献求助10
23秒前
En119发布了新的文献求助10
25秒前
游戏人间发布了新的文献求助10
27秒前
田様应助橙橙采纳,获得10
27秒前
嗷嗷发布了新的文献求助10
27秒前
27秒前
Lucas应助ranlan采纳,获得10
27秒前
小个发布了新的文献求助10
32秒前
LYH发布了新的文献求助10
38秒前
所所应助青蛙打不过小熊采纳,获得10
39秒前
En119完成签到,获得积分10
39秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466581
求助须知:如何正确求助?哪些是违规求助? 3059363
关于积分的说明 9066062
捐赠科研通 2749840
什么是DOI,文献DOI怎么找? 1508739
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696858