A Queueing Model and Analysis for Autonomous Vehicles on Highways

水准点(测量) 吞吐量 排队论 计算机科学 交通拥挤 过程(计算) 政府(语言学) 运输工程 运筹学 计算机网络 电信 工程类 操作系统 哲学 语言学 地理 无线 大地测量学
作者
Neda Mirzaeian,Soo-Haeng Cho,Alan Scheller‐Wolf
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (5): 2904-2923 被引量:47
标识
DOI:10.1287/mnsc.2020.3692
摘要

We investigate the effects of autonomous vehicles (AVs) on highway congestion. AVs have the potential to significantly reduce highway congestion because they can maintain smaller intervehicle gaps and travel together in larger platoons than human-driven vehicles (HVs). Various policies have been proposed to regulate AV travel on highways, yet no in-depth comparison of these policies exists. To address this shortcoming, we develop a queueing model for a multilane highway and analyze two policies: the designated-lane policy (“D policy”), under which one lane is designated to AVs, and the integrated policy (“I policy”), under which AVs travel together with HVs in all lanes. We connect the service rate to intervehicle gaps (governed by a Markovian arrival process) and congestion, and measure the performance using mean travel time and throughput. Our analysis shows that although the I policy performs at least as well as a benchmark case with no AVs, the D policy outperforms the benchmark only when the highway is heavily congested and AVs constitute the majority of vehicles; in such a case, this policy may outperform the I policy only in terms of throughput. These findings caution against recent industry and government proposals that the D policy should be employed at the beginning of the mass appearance of AVs. Finally, we calibrate our model to data and show that for highly congested highways, a moderate number of AVs can make a substantial improvement (e.g., 22% AVs can improve throughput by 30%), and when all vehicles are AVs, throughput can be increased by over 400%. This paper was accepted by Jayashankar Swaminathan, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到 ,获得积分10
1秒前
RoboSAMA完成签到 ,获得积分10
2秒前
4秒前
jkljlj发布了新的文献求助10
5秒前
张昌炜完成签到 ,获得积分10
7秒前
科目三应助留胡子的火采纳,获得10
9秒前
耶椰完成签到,获得积分10
9秒前
12秒前
orixero应助耶椰采纳,获得10
20秒前
22秒前
陶醉若云发布了新的文献求助10
22秒前
麦可发布了新的文献求助10
22秒前
秦罗敷应助科研牛马采纳,获得10
23秒前
浮游应助FLyu采纳,获得10
23秒前
厚朴应助清欢小适采纳,获得20
25秒前
小少发布了新的文献求助10
27秒前
28秒前
英姑应助Xjx6519采纳,获得10
28秒前
研友_VZG7GZ应助阳光的梦寒采纳,获得10
32秒前
Ava应助吴咪采纳,获得10
35秒前
BALB/c饲养员完成签到,获得积分10
36秒前
英姑应助Wqian采纳,获得10
36秒前
美女完成签到,获得积分10
39秒前
44秒前
陶醉若云完成签到,获得积分10
44秒前
科研通AI6应助kingwhitewing采纳,获得10
46秒前
春日无尾熊完成签到 ,获得积分10
49秒前
Wqian发布了新的文献求助10
49秒前
hoy关注了科研通微信公众号
52秒前
54秒前
54秒前
CipherSage应助伯言采纳,获得10
56秒前
东方越彬发布了新的文献求助10
58秒前
科研通AI6应助Jodie采纳,获得10
58秒前
Xjx6519发布了新的文献求助10
59秒前
麦可完成签到,获得积分10
1分钟前
龙卷风摧毁停车场完成签到,获得积分10
1分钟前
Seven完成签到,获得积分10
1分钟前
1分钟前
hoy发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555