致密部
黑质
多巴胺能
α-突触核蛋白
细胞生物学
化学
帕金森病
绿色荧光蛋白
神经退行性变
生物
多巴胺
神经科学
内科学
生物化学
医学
疾病
基因
作者
Sertan Arkan,Mårten Ljungberg,Deniz Kirik,Christian Hansen
标识
DOI:10.1016/j.nbd.2021.105477
摘要
α-synuclein (α-syn) aggregation can lead to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) as invariably observed in patients with Parkinson's Disease (PD). The co-chaperone DNAJB6 has previously been found to be expressed at higher levels in PD patients than in control subjects and was also found in Lewy bodies. Our previous experiments showed that knock out of DNAJB6 induced α-syn aggregation in cellular level. However, effects of overexpression of DNAJB6 against α-syn aggregation remains to be investigated.We used a α-syn CFP/YFP HEK293 FRET cell line to investigate the effects of overexpression of DNAJB6 in cellular level. α-syn aggregation was induced by transfection α-syn preformed fibrils (PPF), then was measured FRET analysis. We proceeded to investigate if DNAJB6b can impair α-syn aggregation and toxicity in an animal model and used adeno associated vira (AAV6) designed to overexpress of human wt α-syn, GFP-DNAJB6 or GFP in rats. These vectors were injected into the SNpc of the rats, unilaterally. Rats injected with vira to express α-syn along with GFP in the SNpc where compared to rats expressing α-syn and GFP-DNAJB6. We evaluated motor functions, dopaminergic cell death, and axonal degeneration in striatum.We show that DNAJB6 prevent α-syn aggregation induced by α-syn PFF's, in a cell culture model. In addition, we observed α-syn overexpression caused dopaminergic cell death and that this was strongly reduced by co-expression of DNAJB6b. The lesion caused by α-syn overexpression resulted in behavior deficits, which increased over time as seen in stepping test, which was rescued by co-expression of DNAJB6b.We here demonstrate for the first time that DNAJB6 is a strong suppressor of α-syn aggregation in cells and in animals and that this results in a suppression of dopaminergic cell death and PD related motor deficits in an animal model of PD.
科研通智能强力驱动
Strongly Powered by AbleSci AI