无监督学习
水准点(测量)
计算机科学
异常检测
实验数据
相(物质)
相图
不完美的
弗洛奎特理论
量子
人工智能
拓扑数据分析
机器学习
拓扑(电路)
统计物理学
算法
物理
数学
量子力学
语言学
统计
哲学
大地测量学
非线性系统
组合数学
地理
作者
Niklas Käming,Anna Dawid,Korbinian Kottmann,Maciej Lewenstein,K. Sengstock,Alexandre Dauphin,Christof Weitenberg
标识
DOI:10.1088/2632-2153/abffe7
摘要
Abstract Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI