Geometrically Editable Face Image Translation With Adversarial Networks

计算机科学 人工智能 图像翻译 计算机视觉 图像(数学) 面子(社会学概念) 修补 对抗制 卷积神经网络 面部识别系统 图像拼接 像素
作者
Songyao Jiang,Zhiqiang Tao,Yun Fu
出处
期刊:IEEE Transactions on Image Processing 卷期号:30: 2771-2783 被引量:5
标识
DOI:10.1109/tip.2021.3052084
摘要

Recently, image-to-image translation has received increasing attention, which aims to map images in one domain to another specific one. Existing methods mainly solve this task via a deep generative model that they focus on exploring the bi-directional or multi-directional relationship between specific domains. Those domains are often categorized by attribute-level or class-level labels, which do not incorporate any geometric information in learning process. As a result, existing methods are incapable of editing geometric contents during translation. They also neglect to utilize higher-level and instance-specific information to further guide the training process, leading to a great deal of unrealistic synthesized images of low fidelity, especially for face images. To address these challenges, we formulate the general image translation problem as multi-domain mappings in both geometric and attribute directions within an image set that shares a same latent vector. Particularly, we propose a novel Geometrically Editable Generative Adversarial Networks (GEGAN) model to solve this problem for face images by leveraging facial semantic segmentation to explicitly guide its geometric editing. In details, input face images are encoded to their latent representations via a variational autoencoder, a segmentor network is designed to impose semantic information on the generated images, and multi-scale regional discriminators are employed to force the generator to pay attention to the details of key components. We provide both quantitative and qualitative evaluations on CelebA dataset to demonstrate our ability of the geometric modification and our improvement in image fidelity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pipi发布了新的文献求助10
刚刚
Nature完成签到 ,获得积分10
刚刚
孙友浩完成签到,获得积分10
1秒前
摆哥完成签到,获得积分10
3秒前
5秒前
无花果应助淡定小蜜蜂采纳,获得10
6秒前
段辉发布了新的文献求助20
7秒前
ycc完成签到,获得积分10
7秒前
乐乐乐发布了新的文献求助10
8秒前
wind完成签到 ,获得积分10
9秒前
Dr W完成签到 ,获得积分10
9秒前
11秒前
啥时候能早睡完成签到 ,获得积分10
12秒前
稳重的蜡烛完成签到,获得积分10
13秒前
壮观的晓露完成签到,获得积分10
14秒前
16秒前
努力的学完成签到,获得积分10
17秒前
我爱科研科研爱我完成签到,获得积分10
18秒前
陈居居发布了新的文献求助10
19秒前
星星完成签到,获得积分10
21秒前
yongzaizhuigan完成签到,获得积分0
22秒前
IBMffff完成签到,获得积分10
23秒前
淡定小蜜蜂完成签到,获得积分10
24秒前
乐乐乐完成签到,获得积分10
25秒前
松柏完成签到 ,获得积分10
26秒前
cucurene发布了新的文献求助10
26秒前
gtgyh完成签到 ,获得积分20
30秒前
和风完成签到 ,获得积分10
30秒前
朴素的凉面完成签到,获得积分10
31秒前
yeyuchenfeng完成签到,获得积分10
32秒前
plant完成签到,获得积分10
34秒前
hululu完成签到 ,获得积分10
35秒前
细草微风岸完成签到 ,获得积分10
36秒前
研友_n2KQ2Z完成签到,获得积分10
38秒前
38秒前
kyt完成签到,获得积分10
38秒前
pipi完成签到,获得积分20
39秒前
Zurlliant完成签到,获得积分10
39秒前
蛋妞儿完成签到,获得积分10
39秒前
T_MC郭完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146931
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826946
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565