木糖醇
生物化学
氧化还原酶
铁氧还蛋白
代谢工程
焊剂(冶金)
木糖
还原酶
代谢途径
磷酸戊糖途径
生物合成
硫氧还蛋白还原酶
酶
化学
生物
糖酵解
发酵
硫氧还蛋白
有机化学
作者
Shuai Li,Zhixia Ye,Eirik A. Moreb,Jennifer N. Hennigan,Daniel Báez Castellanos,Tian Yang,Michael Lynch
标识
DOI:10.1016/j.ymben.2021.01.005
摘要
We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 20-fold and 90-fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and an NADPH generation pathway, consisting of pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over the regulation of the membrane bound transhydrogenase as well as NADPH production through pyruvate ferredoxin oxidoreductase to broadly enable improved NADPH dependent bioconversions or production via NADPH dependent metabolic pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI