亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Typicality modulates attentional capture by object categories.

对象(语法) 任务(项目管理) 感知 刺激(心理学) 沟通 计算机科学 视觉对象识别的认知神经科学 认知 人工智能 视觉感受 可视对象
作者
Y. Isabella Lim,Andrew Clement,Jay Pratt
出处
期刊:Attention Perception & Psychophysics [Springer Nature]
卷期号:83 (4): 1397-1406
标识
DOI:10.3758/s13414-020-02233-6
摘要

What we pay attention to in the visual environment is often driven by what we know about the world. For example, a number of studies have found that observers can adopt attentional sets for a particular semantic category. However, some objects are more typical members of a category than others. While previous evidence suggests that an object’s typicality can influence the guidance of attention in visual search, it is unclear whether typicality can also influence the capture of attention. To test whether this is the case, participants were given a category of objects at the beginning of each trial. Then, a rapid serial visual presentation (RSVP) stream was presented at fixation, and participants had to indicate whether an object of the given category was present or absent from the stream. Importantly, a single flanker image also appeared above or below the central stream just before the target. This flanker could belong either to the same category as the target or a different category, and could be a typical or atypical exemplar of that category. Participants were less accurate at detecting the target when the flanker belonged to the same category as the target. Moreover, participants were even less accurate when the flanker was a typical exemplar of this category. Similar findings were observed when targets consisted of typical and atypical exemplars. Together, these findings indicate that the extent of attentional capture toward a distractor depends on whether the distractor matches the category and typicality of one’s attentional set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KSung完成签到 ,获得积分10
4秒前
11秒前
草木完成签到,获得积分10
46秒前
47秒前
葛力发布了新的文献求助10
53秒前
56秒前
1分钟前
小菜鸡发布了新的文献求助10
1分钟前
江上烟完成签到,获得积分10
1分钟前
小马甲应助小菜鸡采纳,获得10
1分钟前
lalala完成签到,获得积分10
1分钟前
调皮傲易完成签到 ,获得积分10
1分钟前
江上烟发布了新的文献求助30
1分钟前
小菜鸡完成签到,获得积分10
1分钟前
田様应助ivyjianjie采纳,获得10
1分钟前
科目三应助yuanweisun采纳,获得10
1分钟前
2分钟前
2分钟前
yuanweisun发布了新的文献求助10
2分钟前
酷波er应助ZHY采纳,获得10
2分钟前
ivyjianjie完成签到,获得积分10
2分钟前
2分钟前
ivyjianjie发布了新的文献求助10
2分钟前
nadia完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
思源应助qiqi1111采纳,获得10
3分钟前
小易发布了新的文献求助20
3分钟前
3分钟前
qiqi1111发布了新的文献求助10
3分钟前
anne完成签到 ,获得积分10
3分钟前
3分钟前
豆乳米麻薯完成签到 ,获得积分10
3分钟前
xin完成签到 ,获得积分10
3分钟前
Rashalin完成签到,获得积分0
3分钟前
3分钟前
ZHY发布了新的文献求助10
4分钟前
yq完成签到 ,获得积分10
4分钟前
上官若男应助海岢采纳,获得10
4分钟前
4分钟前
小摩尔完成签到,获得积分10
4分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736624
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020070
捐赠科研通 2997270
什么是DOI,文献DOI怎么找? 1644507
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648