亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests

胸径 泰加语 比例(比率) 可持续森林管理 森林动态 树(集合论) 森林经营 环境科学 生态学 自然地理学 地理 计算机科学 林业 数学 地图学 生物 数学分析
作者
Jiaxin Chen,Hongqiang Yang,Rongzhou Man,Weifeng Wang,Mahadev Sharma,Changhui Peng,John Parton,Huaiping Zhu,Ziwang Deng
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:466: 118104-118104 被引量:19
标识
DOI:10.1016/j.foreco.2020.118104
摘要

Sustainable forest management requires the ability to accurately model forest dynamics under a changing environment, which is difficult using conventional statistical methods as many factors that interactively affect forest growth must be considered. As well, statistical model development is often limited by the lack of broad-scale repeated forest measurements needed to capture changes in 1 or more variables and the corresponding changes in forest dynamics (e.g., growth in diameter and height), while assuming other variables do not change, or their changes do not significantly affect the forest dynamics of interest. In many forested countries, comprehensive monitoring programs have amassed large amounts of diverse forest measurement data. Here we propose a new approach for using artificial neural network-based machine learning to synthesize spatiotemporal tree measurement data collected over a vast area of boreal forest in central Canada to model diameter at breast height (DBH)-height and DBH-height-age relationships for 6 dominant tree species. More than 30 potentially important stand structure, site, and climate variables were considered. We used an individual-based modelling approach by considering each individual tree measurement as an instance of the complex relationships modelled; together, broad-scale long-term monitoring data contain many such instances, representing considerable spatial and temporal scale variation in forest growth and growing conditions. Using this approach, we significantly improved DBH-height and DBH-height-age models. And the models developed allowed us to analyze the effects of environmental conditions or changes in these conditions on forest growth. This may be the first attempt at applying this type of approach, which can be used to more accurately model, for example, forest growth, mortality, and how they are affected by changing climate in a variety of forest types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到 ,获得积分10
2秒前
高大的咚咚关注了科研通微信公众号
27秒前
27秒前
Dr_an发布了新的文献求助10
33秒前
48秒前
咸鱼卷完成签到 ,获得积分10
50秒前
53秒前
59秒前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
TAOTAO完成签到,获得积分20
1分钟前
TAOTAO发布了新的文献求助10
1分钟前
1分钟前
2分钟前
seven发布了新的文献求助10
2分钟前
wanjingwan完成签到 ,获得积分10
2分钟前
炸鸡叔完成签到 ,获得积分10
3分钟前
枫于林完成签到 ,获得积分10
3分钟前
3分钟前
刘海洋发布了新的文献求助30
3分钟前
李伟发布了新的文献求助10
3分钟前
星辰大海应助Narcissa采纳,获得30
3分钟前
5High_0完成签到 ,获得积分10
4分钟前
4分钟前
与山发布了新的文献求助10
4分钟前
5分钟前
刘海洋发布了新的文献求助10
5分钟前
Narcissa发布了新的文献求助30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
剑逍遥完成签到 ,获得积分10
5分钟前
小二郎应助与山采纳,获得10
5分钟前
英姑应助HuiHui采纳,获得10
5分钟前
caca完成签到,获得积分10
5分钟前
Narcissa完成签到,获得积分10
6分钟前
栗町木发布了新的文献求助50
6分钟前
碧蓝香芦完成签到 ,获得积分10
6分钟前
Hsxbk.发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146728
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826552
捐赠科研通 2454530
什么是DOI,文献DOI怎么找? 1306360
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522