Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests

胸径 泰加语 比例(比率) 可持续森林管理 森林动态 树(集合论) 森林经营 环境科学 森林资源清查 生态学 自然地理学 地理 林业 数学 地图学 农林复合经营 生物 数学分析
作者
Jiaxin Chen,Hongqiang Yang,Rongzhou Man,Weifeng Wang,Mahadev Sharma,Changhui Peng,John Parton,Huaiping Zhu,Ziwang Deng
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:466: 118104-118104 被引量:24
标识
DOI:10.1016/j.foreco.2020.118104
摘要

Sustainable forest management requires the ability to accurately model forest dynamics under a changing environment, which is difficult using conventional statistical methods as many factors that interactively affect forest growth must be considered. As well, statistical model development is often limited by the lack of broad-scale repeated forest measurements needed to capture changes in 1 or more variables and the corresponding changes in forest dynamics (e.g., growth in diameter and height), while assuming other variables do not change, or their changes do not significantly affect the forest dynamics of interest. In many forested countries, comprehensive monitoring programs have amassed large amounts of diverse forest measurement data. Here we propose a new approach for using artificial neural network-based machine learning to synthesize spatiotemporal tree measurement data collected over a vast area of boreal forest in central Canada to model diameter at breast height (DBH)-height and DBH-height-age relationships for 6 dominant tree species. More than 30 potentially important stand structure, site, and climate variables were considered. We used an individual-based modelling approach by considering each individual tree measurement as an instance of the complex relationships modelled; together, broad-scale long-term monitoring data contain many such instances, representing considerable spatial and temporal scale variation in forest growth and growing conditions. Using this approach, we significantly improved DBH-height and DBH-height-age models. And the models developed allowed us to analyze the effects of environmental conditions or changes in these conditions on forest growth. This may be the first attempt at applying this type of approach, which can be used to more accurately model, for example, forest growth, mortality, and how they are affected by changing climate in a variety of forest types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张晓龙发布了新的文献求助10
1秒前
橙神完成签到,获得积分10
1秒前
1秒前
谜记完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
每天多喝水完成签到 ,获得积分10
2秒前
Brandy完成签到,获得积分10
2秒前
超级月光完成签到,获得积分10
2秒前
李玢琪完成签到 ,获得积分10
3秒前
街道办事部完成签到,获得积分10
4秒前
柳煜城完成签到,获得积分10
4秒前
5秒前
aerfas完成签到,获得积分10
5秒前
小海棉完成签到,获得积分10
5秒前
xl完成签到,获得积分10
6秒前
郭翔完成签到,获得积分10
6秒前
周娅敏完成签到,获得积分10
7秒前
7秒前
Doctor_Peng完成签到,获得积分10
7秒前
江三村发布了新的文献求助10
8秒前
赘婿应助谢书南采纳,获得10
8秒前
温润如玉坤完成签到,获得积分10
8秒前
8秒前
糊里糊涂完成签到 ,获得积分10
9秒前
9秒前
结实的老虎完成签到,获得积分10
9秒前
搞怪曼波完成签到 ,获得积分10
9秒前
小铭同学完成签到,获得积分10
10秒前
张才豪发布了新的文献求助10
10秒前
ckz发布了新的文献求助10
10秒前
新秀完成签到,获得积分10
10秒前
zehua309完成签到,获得积分10
10秒前
ll完成签到 ,获得积分10
11秒前
12秒前
整齐小猫咪完成签到,获得积分10
12秒前
yolo发布了新的文献求助10
13秒前
jialin完成签到 ,获得积分10
13秒前
白色发布了新的文献求助30
13秒前
清爽的碧空完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698957
求助须知:如何正确求助?哪些是违规求助? 5127856
关于积分的说明 15223496
捐赠科研通 4853894
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555882
关于科研通互助平台的介绍 1514222