Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests

胸径 泰加语 比例(比率) 可持续森林管理 森林动态 树(集合论) 森林经营 环境科学 森林资源清查 生态学 自然地理学 地理 林业 数学 地图学 农林复合经营 生物 数学分析
作者
Jiaxin Chen,Hongqiang Yang,Rongzhou Man,Weifeng Wang,Mahadev Sharma,Changhui Peng,John Parton,Huaiping Zhu,Ziwang Deng
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:466: 118104-118104 被引量:24
标识
DOI:10.1016/j.foreco.2020.118104
摘要

Sustainable forest management requires the ability to accurately model forest dynamics under a changing environment, which is difficult using conventional statistical methods as many factors that interactively affect forest growth must be considered. As well, statistical model development is often limited by the lack of broad-scale repeated forest measurements needed to capture changes in 1 or more variables and the corresponding changes in forest dynamics (e.g., growth in diameter and height), while assuming other variables do not change, or their changes do not significantly affect the forest dynamics of interest. In many forested countries, comprehensive monitoring programs have amassed large amounts of diverse forest measurement data. Here we propose a new approach for using artificial neural network-based machine learning to synthesize spatiotemporal tree measurement data collected over a vast area of boreal forest in central Canada to model diameter at breast height (DBH)-height and DBH-height-age relationships for 6 dominant tree species. More than 30 potentially important stand structure, site, and climate variables were considered. We used an individual-based modelling approach by considering each individual tree measurement as an instance of the complex relationships modelled; together, broad-scale long-term monitoring data contain many such instances, representing considerable spatial and temporal scale variation in forest growth and growing conditions. Using this approach, we significantly improved DBH-height and DBH-height-age models. And the models developed allowed us to analyze the effects of environmental conditions or changes in these conditions on forest growth. This may be the first attempt at applying this type of approach, which can be used to more accurately model, for example, forest growth, mortality, and how they are affected by changing climate in a variety of forest types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hustzwqq完成签到,获得积分10
刚刚
111完成签到 ,获得积分10
刚刚
MelonWong发布了新的文献求助10
刚刚
泡芙完成签到,获得积分10
刚刚
ray发布了新的文献求助10
刚刚
小二郎应助sda采纳,获得10
1秒前
打打应助朱朱采纳,获得10
1秒前
酷炫的飞阳完成签到,获得积分20
1秒前
AH106应助will采纳,获得10
2秒前
司马秋凌完成签到,获得积分10
2秒前
2秒前
Fernweh发布了新的文献求助10
3秒前
852应助Moro采纳,获得10
3秒前
4秒前
laryc发布了新的文献求助10
4秒前
真三完成签到,获得积分10
4秒前
4秒前
4秒前
852应助lycoris采纳,获得10
5秒前
星辰大海应助温婉采纳,获得10
5秒前
6秒前
科目三应助222333采纳,获得10
6秒前
绝望的文盲关注了科研通微信公众号
6秒前
喜欢月亮魔法师完成签到,获得积分10
7秒前
wanci应助如意的雨琴采纳,获得10
7秒前
7秒前
if发布了新的文献求助10
8秒前
柒景景完成签到,获得积分10
8秒前
9秒前
时钟完成签到,获得积分20
9秒前
TEDDY发布了新的文献求助10
9秒前
heye完成签到,获得积分20
9秒前
鱼鱼鱼完成签到,获得积分10
9秒前
憨憨发布了新的文献求助10
9秒前
Mimi发布了新的文献求助10
9秒前
10秒前
核桃发布了新的文献求助10
10秒前
11秒前
11秒前
饲养员发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728