作业车间调度
渡线
计算机科学
拖延
水准点(测量)
初始化
数学优化
人口
操作员(生物学)
多目标优化
人工智能
数学
机器学习
地铁列车时刻表
基因
操作系统
转录因子
社会学
人口学
抑制因子
化学
生物化学
程序设计语言
地理
大地测量学
作者
Yali Wang,Bas van Stein,Michael Emmerich,Thomas Bäck
出处
期刊:Cornell University - arXiv
日期:2020-04-14
标识
DOI:10.48550/arxiv.2004.06564
摘要
A customized multi-objective evolutionary algorithm (MOEA) is proposed for the multi-objective flexible job shop scheduling problem (FJSP). It uses smart initialization approaches to enrich the first generated population, and proposes various crossover operators to create a better diversity of offspring. Especially, the MIP-EGO configurator, which can tune algorithm parameters, is adopted to automatically tune operator probabilities. Furthermore, different local search strategies are employed to explore the neighborhood for better solutions. In general, the algorithm enhancement strategy can be integrated with any standard EMO algorithm. In this paper, it has been combined with NSGA-III to solve benchmark multi-objective FJSPs, whereas an off-the-shelf implementation of NSGA-III is not capable of solving the FJSP. The experimental results show excellent performance with less computing budget.
科研通智能强力驱动
Strongly Powered by AbleSci AI