Expected Uncertainty Reduction for Sequential Kriging-Based Reliability Analysis

还原(数学) 计算机科学 采样(信号处理) 可靠性(半导体) 功能(生物学) 克里金 序贯分析 样品(材料) 数学优化 算法 数据挖掘 数学 统计 机器学习 功率(物理) 进化生物学 量子力学 生物 滤波器(信号处理) 色谱法 物理 计算机视觉 化学 几何学
作者
Meng Li,Sheng Shen,Vahid Barzegar,Mohammadkazem Sadoughi,Simon Laflamme,Chao Hu
标识
DOI:10.1115/detc2020-22680
摘要

Abstract Several acquisition functions have been proposed to identify an optimal sequence of samples in sequential kriging-based reliability analysis. However, no single acquisition function provides better performance over the others in all cases. To address this problem, this paper proposes a new acquisition function, namely expected uncertainty reduction (EUR), that serves as a meta-criterion to select the best sample from a set of optimal samples, each identified from a large number of candidate samples according to the criterion of an acquisition function. EUR directly quantifies the expected reduction of the uncertainty in the prediction of limit-state function by adding an optimal sample. The uncertainty reduction is quantified by sampling over the kriging posterior. In the proposed EUR-based sequential sampling framework, a portfolio that consists of four acquisition functions is first employed to suggest four optimal samples at each iteration of sequential sampling. Then, EUR is employed as the meta-criterion to identify the best sample among those optimal samples. The results from two mathematical case studies show that (1) EUR-based sequential sampling can perform as well as or outperform the single use of any acquisition function in the portfolio, and (2) the best-performing acquisition function may change from one problem to another or even from one iteration to the next within a problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧子完成签到,获得积分10
1秒前
能干的茗发布了新的文献求助10
2秒前
ljkshr完成签到,获得积分10
4秒前
4秒前
UAU发布了新的文献求助10
4秒前
慧子发布了新的文献求助10
4秒前
Lizzy发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
zhouxuefeng发布了新的文献求助10
8秒前
9秒前
10秒前
黑冰A发布了新的文献求助10
11秒前
上官若男应助CHAIZH采纳,获得10
11秒前
log发布了新的文献求助10
12秒前
15秒前
rainhowk完成签到,获得积分10
15秒前
落落完成签到,获得积分10
15秒前
赘婿应助黑冰A采纳,获得10
16秒前
SYLH应助winjay采纳,获得10
17秒前
17秒前
Shabby0-0完成签到,获得积分10
18秒前
18秒前
完美世界应助budingman采纳,获得30
20秒前
揽月完成签到,获得积分10
20秒前
bji完成签到,获得积分10
20秒前
20秒前
赘婿应助满意的盼夏采纳,获得10
21秒前
21秒前
小冯爱睡觉完成签到,获得积分20
22秒前
23秒前
揽月发布了新的文献求助10
23秒前
WN发布了新的文献求助10
23秒前
24秒前
liangyiteng发布了新的文献求助10
24秒前
25秒前
明理问柳完成签到,获得积分10
26秒前
丘比特应助等待的谷波采纳,获得10
26秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498