On the feature selection for battery state of health estimation based on charging–discharging profiles

电池(电) 特征选择 选择(遗传算法) 原始数据 健康状况 计算机科学 健康指标 可靠性工程 关系(数据库) 人工智能 数据挖掘 工程类 功率(物理) 人口 环境卫生 物理 医学 量子力学 程序设计语言
作者
Yuanyuan Li,Daniel‐Ioan Stroe,Yuhua Cheng,Hanmin Sheng,Xin Sui,Remus Teodorescu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:33: 102122-102122 被引量:117
标识
DOI:10.1016/j.est.2020.102122
摘要

Correctly evaluating the health status of the battery is of great significance for ensuring the safety of electric vehicles, and avoiding potential failures of electric vehicles. Recently, the data-driven methods have raised interest in evaluating battery the battery state of health (SOH) based on the statistical theory. However, the accuracy of the battery state of health estimation algorithms is greatly affected by the model input selection. Because of the limitation for battery data type, it is meaningful to extract the useful data information from the raw data. In this work, we extract health indicators from the battery current, voltage, temperature data based on the laboratory measured experimental data, which can inform model input choices, thus improving the accuracy in battery health estimation. Then, grey relation analysis is used to quantify the correlation between health indicators and battery capacity degradation, and using this quantified result as the basis for the selection of model variables for battery modeling. According to the correlation degree value which calculated by grey relation analysis, it shows that most health indicators are more related to the battery heath. The value of correlation degree for most features are above 90%, and the lowest value is 69%. Finally, the performance of the estimated model based on these health indicator is evaluated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆完成签到,获得积分10
刚刚
Rory完成签到 ,获得积分10
1秒前
快乐修勾完成签到 ,获得积分10
2秒前
George发布了新的文献求助30
3秒前
青青子衿完成签到,获得积分10
4秒前
xiaoyudianddd发布了新的文献求助10
4秒前
4秒前
Jaho完成签到,获得积分10
4秒前
5秒前
5秒前
迷路以蓝完成签到,获得积分10
8秒前
mj789发布了新的文献求助10
8秒前
JacksonHe完成签到,获得积分10
12秒前
linnazhu完成签到,获得积分10
12秒前
吮指鸡发布了新的文献求助10
12秒前
时尚战斗机应助断舍离采纳,获得10
13秒前
uu完成签到,获得积分10
14秒前
15秒前
15秒前
乐乐完成签到,获得积分10
15秒前
HelloJoey完成签到,获得积分10
16秒前
17秒前
KATHY完成签到,获得积分10
17秒前
mj789完成签到,获得积分10
17秒前
19秒前
19秒前
晓君完成签到,获得积分10
19秒前
阿猩a完成签到 ,获得积分10
20秒前
20秒前
21秒前
soil应助纳斯达克采纳,获得20
22秒前
AKKKK发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
24秒前
何pulapula完成签到 ,获得积分10
25秒前
彭于彦祖应助博修采纳,获得50
25秒前
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891