A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources

计算机科学 嵌入 分类 理论计算机科学 聚类分析 图形 标杆管理 数据科学 图嵌入 可扩展性 机器学习 数据挖掘 人工智能 数据库 业务 营销
作者
Xiao Wang,Deyu Bo,Chuan Shi,Shaohua Fan,Yanfang Ye,Philip S. Yu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 415-436 被引量:63
标识
DOI:10.1109/tbdata.2022.3177455
摘要

Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到,获得积分10
刚刚
宇哈哈完成签到,获得积分10
1秒前
科研通AI2S应助zjzjzjzjzj采纳,获得10
1秒前
2秒前
坚定的平松完成签到,获得积分10
4秒前
pphhhhaannn完成签到,获得积分10
4秒前
残荷听雨发布了新的文献求助10
4秒前
风汐5423完成签到,获得积分10
5秒前
6秒前
wuyiiyi完成签到,获得积分10
6秒前
huihui完成签到,获得积分10
8秒前
dingding完成签到,获得积分10
9秒前
joeqin完成签到,获得积分10
10秒前
10秒前
木头完成签到,获得积分10
11秒前
负责小蜜蜂完成签到,获得积分10
12秒前
daker完成签到 ,获得积分10
13秒前
南国梦关注了科研通微信公众号
14秒前
李爱国应助王治清采纳,获得10
14秒前
木头发布了新的文献求助10
15秒前
何茂郎完成签到,获得积分20
19秒前
19秒前
科研通AI2S应助淡定靖儿采纳,获得10
19秒前
最初的远方完成签到,获得积分10
22秒前
柳紊发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
25秒前
在水一方应助何茂郎采纳,获得10
26秒前
有机合成完成签到,获得积分10
27秒前
顺利的乐枫完成签到 ,获得积分10
30秒前
31秒前
hyh发布了新的文献求助10
31秒前
自然的听寒完成签到 ,获得积分10
32秒前
FashionBoy应助不爱吃芒果采纳,获得10
32秒前
CipherSage应助有机合成采纳,获得10
33秒前
34秒前
34秒前
柳紊完成签到,获得积分10
34秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388