A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources

计算机科学 嵌入 分类 理论计算机科学 聚类分析 图形 标杆管理 数据科学 图嵌入 可扩展性 机器学习 数据挖掘 人工智能 数据库 业务 营销
作者
Xiao Wang,Deyu Bo,Chuan Shi,Shaohua Fan,Yanfang Ye,Philip S. Yu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 415-436 被引量:63
标识
DOI:10.1109/tbdata.2022.3177455
摘要

Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywang发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
ewqw关注了科研通微信公众号
3秒前
曦小蕊完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
奋斗灵波发布了新的文献求助10
5秒前
药学牛马发布了新的文献求助10
5秒前
5秒前
科研通AI5应助WZ0904采纳,获得10
6秒前
叶未晞yi发布了新的文献求助10
7秒前
ipeakkka发布了新的文献求助10
8秒前
Jzhang应助迷人的映雁采纳,获得10
8秒前
8秒前
zzz完成签到,获得积分10
9秒前
9秒前
小安发布了新的文献求助10
9秒前
10秒前
叶未晞yi完成签到,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
kilig应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得30
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
博ge发布了新的文献求助10
15秒前
16秒前
葶儿发布了新的文献求助10
16秒前
hgcyp完成签到,获得积分10
21秒前
ysh完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824