A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources

计算机科学 嵌入 分类 理论计算机科学 聚类分析 图形 标杆管理 数据科学 图嵌入 可扩展性 机器学习 数据挖掘 人工智能 数据库 业务 营销
作者
Xiao Wang,Deyu Bo,Chuan Shi,Shaohua Fan,Yanfang Ye,Philip S. Yu
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:9 (2): 415-436 被引量:63
标识
DOI:10.1109/tbdata.2022.3177455
摘要

Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵泽发布了新的文献求助10
3秒前
乐观的鸽子完成签到,获得积分10
3秒前
顾矜应助追寻宛海采纳,获得20
4秒前
5秒前
baobaonaixi完成签到,获得积分10
6秒前
7秒前
我是老大应助感动丸子采纳,获得10
7秒前
Tink完成签到,获得积分0
8秒前
8秒前
酷波er应助leanne采纳,获得10
8秒前
Owen应助热闹的冬天采纳,获得10
9秒前
10秒前
10秒前
Hhhhhhu完成签到,获得积分10
11秒前
Hannah1117完成签到,获得积分10
13秒前
小幸运发布了新的文献求助10
13秒前
bkagyin应助zhengqisong采纳,获得10
13秒前
忧郁绮山完成签到 ,获得积分10
14秒前
shinn发布了新的文献求助10
14秒前
柯一一应助小马采纳,获得10
14秒前
zwying完成签到,获得积分10
15秒前
Hannah1117发布了新的文献求助10
16秒前
16秒前
19秒前
7890733发布了新的文献求助10
20秒前
cch完成签到,获得积分20
20秒前
oneonlycrown完成签到,获得积分10
21秒前
科目三应助Hannah1117采纳,获得10
21秒前
共享精神应助王晓雪采纳,获得10
23秒前
leanne发布了新的文献求助10
23秒前
s1kl完成签到,获得积分10
24秒前
谨慎翎关注了科研通微信公众号
24秒前
25秒前
凡迪亚比应助YGYANG采纳,获得10
25秒前
26秒前
冰冰完成签到 ,获得积分10
26秒前
在水一方应助hhhhwei采纳,获得10
29秒前
无与伦比完成签到,获得积分10
29秒前
30秒前
CipherSage应助shinn采纳,获得30
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494