清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modelling Drug-Target Binding Affinity using a BERT based Graph Neural network

可解释性 计算机科学 杠杆(统计) 人工智能 机器学习 图形 卷积神经网络 药物发现 任务(项目管理) 药物靶点 理论计算机科学 生物信息学 药理学 生物 经济 管理 医学
作者
Mark Lennox,Neil Robertson,Barry Devereux
标识
DOI:10.1109/embc46164.2021.9629695
摘要

Understanding the interactions between novel drugs and target proteins is fundamentally important in disease research as discovering drug-protein interactions can be an exceptionally time-consuming and expensive process. Alternatively, this process can be simulated using modern deep learning methods that have the potential of utilising vast quantities of data to reduce the cost and time required to provide accurate predictions. We seek to leverage a set of BERT-style models that have been pre-trained on vast quantities of both protein and drug data. The encodings produced by each model are then utilised as node representations for a graph convolutional neural network, which in turn are used to model the interactions without the need to simultaneously fine-tune both protein and drug BERT models to the task. We evaluate the performance of our approach on two drug-target interaction datasets that were previously used as benchmarks in recent work.Our results significantly improve upon a vanilla BERT baseline approach as well as the former state-of-the-art methods for each task dataset. Our approach builds upon past work in two key areas; firstly, we take full advantage of two large pre-trained BERT models that provide improved representations of task-relevant properties of both drugs and proteins. Secondly, inspired by work in natural language processing that investigates how linguistic structure is represented in such models, we perform interpretability analyses that allow us to locate functionally-relevant areas of interest within each drug and protein. By modelling the drug-target interactions as a graph as opposed to a set of isolated interactions, we demonstrate the benefits of combining large pre-trained models and a graph neural network to make state-of-the-art predictions on drug-target binding affinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oaoalaa完成签到 ,获得积分10
10秒前
Charlie完成签到 ,获得积分10
23秒前
自由飞翔完成签到 ,获得积分10
33秒前
Shirley发布了新的文献求助10
39秒前
若眠完成签到 ,获得积分10
49秒前
小蘑菇应助zhangxr采纳,获得10
56秒前
开心每一天完成签到 ,获得积分10
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
执着晓亦完成签到 ,获得积分10
2分钟前
在水一方应助fox采纳,获得10
2分钟前
缥缈映安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
fox发布了新的文献求助10
2分钟前
zhzh0618完成签到,获得积分10
3分钟前
糖宝完成签到 ,获得积分10
3分钟前
夏林完成签到,获得积分10
3分钟前
未完成完成签到,获得积分10
4分钟前
研友_850aeZ完成签到,获得积分10
4分钟前
柒月完成签到,获得积分10
4分钟前
Gary完成签到 ,获得积分10
4分钟前
3080完成签到 ,获得积分10
4分钟前
大轩完成签到 ,获得积分10
5分钟前
5分钟前
madison完成签到 ,获得积分10
5分钟前
居居侠完成签到 ,获得积分10
6分钟前
Tong完成签到,获得积分0
6分钟前
6分钟前
墨言无殇完成签到 ,获得积分10
7分钟前
CUN完成签到,获得积分10
7分钟前
鹏gg完成签到 ,获得积分10
8分钟前
清秀的怀蕊完成签到 ,获得积分10
8分钟前
8分钟前
zhangxr发布了新的文献求助10
8分钟前
wanci应助zhangxr采纳,获得10
8分钟前
无悔完成签到 ,获得积分10
9分钟前
CipherSage应助Jack Wong采纳,获得10
9分钟前
嬗变的天秤完成签到,获得积分10
9分钟前
10分钟前
Jack Wong发布了新的文献求助10
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162346
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899776
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142