Modelling Drug-Target Binding Affinity using a BERT based Graph Neural network

可解释性 计算机科学 杠杆(统计) 人工智能 机器学习 图形 卷积神经网络 药物发现 任务(项目管理) 药物靶点 理论计算机科学 生物信息学 药理学 生物 经济 管理 医学
作者
Mark Lennox,Neil Robertson,Barry Devereux
标识
DOI:10.1109/embc46164.2021.9629695
摘要

Understanding the interactions between novel drugs and target proteins is fundamentally important in disease research as discovering drug-protein interactions can be an exceptionally time-consuming and expensive process. Alternatively, this process can be simulated using modern deep learning methods that have the potential of utilising vast quantities of data to reduce the cost and time required to provide accurate predictions. We seek to leverage a set of BERT-style models that have been pre-trained on vast quantities of both protein and drug data. The encodings produced by each model are then utilised as node representations for a graph convolutional neural network, which in turn are used to model the interactions without the need to simultaneously fine-tune both protein and drug BERT models to the task. We evaluate the performance of our approach on two drug-target interaction datasets that were previously used as benchmarks in recent work.Our results significantly improve upon a vanilla BERT baseline approach as well as the former state-of-the-art methods for each task dataset. Our approach builds upon past work in two key areas; firstly, we take full advantage of two large pre-trained BERT models that provide improved representations of task-relevant properties of both drugs and proteins. Secondly, inspired by work in natural language processing that investigates how linguistic structure is represented in such models, we perform interpretability analyses that allow us to locate functionally-relevant areas of interest within each drug and protein. By modelling the drug-target interactions as a graph as opposed to a set of isolated interactions, we demonstrate the benefits of combining large pre-trained models and a graph neural network to make state-of-the-art predictions on drug-target binding affinity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mengbo发布了新的文献求助10
1秒前
dd完成签到,获得积分10
1秒前
herdwind完成签到,获得积分10
2秒前
丘比特应助shinn采纳,获得10
2秒前
李健应助lonely采纳,获得10
5秒前
looklook完成签到,获得积分10
6秒前
英姑应助林飞云采纳,获得10
6秒前
mengbo完成签到,获得积分10
9秒前
柔弱亦寒完成签到,获得积分10
9秒前
WangHi完成签到,获得积分10
9秒前
顺心的皮卡丘完成签到 ,获得积分10
10秒前
11秒前
高大的代真完成签到,获得积分10
11秒前
加油完成签到,获得积分10
12秒前
小蘑菇应助负责啤酒采纳,获得10
12秒前
looklook发布了新的文献求助20
12秒前
13秒前
14秒前
甜甜谷波发布了新的文献求助10
15秒前
意境完成签到 ,获得积分10
16秒前
完美世界应助飞先生采纳,获得10
17秒前
小章鱼应助加油采纳,获得10
17秒前
情怀应助雪雪儿采纳,获得30
17秒前
shinn发布了新的文献求助10
18秒前
elmacho完成签到 ,获得积分10
19秒前
20秒前
21秒前
22秒前
23秒前
舒适的小懒猪完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
酒酿是也发布了新的文献求助10
26秒前
臻灏发布了新的文献求助10
26秒前
葵葵发布了新的文献求助10
26秒前
鱼瓜瓜发布了新的文献求助10
28秒前
28秒前
pyt发布了新的文献求助10
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303