化学
DPPH
多糖
水解
酶水解
木糖
鼠李糖
还原糖
抗氧化剂
羟基自由基
糖
色谱法
有机化学
酸水解
单糖
发酵
作者
Qiong Wu,Dandan Qin,Huixin Cao,Yang Bai
标识
DOI:10.1016/j.ijbiomac.2020.06.098
摘要
An efficient enzymatic hydrolysis method was developed and optimized for the degradation of auricularia auricula polysaccharide (AAP) and the degradation product of AAP was characterized. Cellulase was used for the degradation of AAP. The yield of reducing sugar and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate were used as indices to optimize the enzymatic hydrolysis of AAP, based on response surface methodology (RSM). The resulting optimal enzymolysis conditions were as follows: enzyme dosage, 13,500 U/g; enzymolysis temperature, 50 °C; and pH, 4.2. Under these conditions, the actual yield of reducing sugar was 16.50 mg/mL and the DPPH radical scavenging rate was 87.97%. The degradation product of AAP (C-EAAP) was homogeneous and contained alpha and beta glycoside bonds, but did not contain protein or nucleic acid. The molecular weight of the degradation product was 5.94 × 105 Da. Monosaccharide composition analysis revealed that C-EAAP was composed of mannose (57.1%), glucuronic acid (10.0%), rhamnose (0.4%), glucose (22.5%), galactose (2.9%), xylose (6.0%), and fucose (1.1%). The antioxidant activity of the polysaccharide indicated that C-EAAP had better antioxidant activity than AAP. The scavenging rates of C-EAAP for hydroxyl radicals (·OH) and superoxide anion radicals (O2−·) were 1.65 and 1.90 times those of AAP.
科研通智能强力驱动
Strongly Powered by AbleSci AI