Deep Learning for SVD and Hybrid Beamforming

奇异值分解 计算机科学 波束赋形 基带 人工神经网络 多输入多输出 算法 人工智能 带宽(计算) 电信
作者
Ture Peken,Sudarshan Adiga,Ravi Tandon,Tamal Bose
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 6621-6642 被引量:67
标识
DOI:10.1109/twc.2020.3004386
摘要

Hybrid beamforming (BF), which divides BF operation into radio frequency (RF) and baseband (BB) domains, will play a critical role in MIMO communication at millimeter-wave (mmW) frequencies. In principle, we can obtain unconstrained (optimum) beamformers of a transceiver, which approach the maximum achievable data rates, through its singular value decomposition (SVD). Due to the use of finite-precision phase shifters, combined with power constraints, additional challenges are imposed on the problem of designing hybrid beamformers. Motivated by the recent success of machine learning (ML) techniques, particularly in areas such as computer vision and speech recognition, we explore if ML techniques can be effectively used for SVD and hybrid BF. To this end, we first present a data-driven approach to compute the SVD. We propose three deep neural network (DNN) architectures to approximate the SVD, with varying levels of complexity. The methodology for training these DNN architectures is inspired by the fundamental property of SVD, i.e., it can be used to obtain low-rank approximations. We next explicitly take the constraints of hybrid BF into account (such as quantized phase shifters, power constraints), and propose a novel DNN based approach for the design of hybrid BF systems. To validate the DNN based approach, we present simulation results for both approximating the SVD as well as for hybrid BF. Our results show that DNNs can be an attractive and efficient solution for estimating SVD in a data-driven manner. For the simulations of hybrid BF, we first consider the geometric channel model. We show that the DNN based hybrid BF improves rates by up to 50 - 70% compared to conventional hybrid BF algorithms and achieves 10 - 30% gain in rates compared with the state-of-art ML-aided hybrid BF algorithms. We also discuss the impact of the choice of hyperparameters, such as the number of hidden layers, mini-batch size, and training iterations on the accuracy of DNNs. Furthermore, we provide time complexity and memory requirement analyses for the proposed approach and state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cooper完成签到 ,获得积分10
刚刚
阳光沛凝完成签到,获得积分10
刚刚
竹林听雨zxs完成签到 ,获得积分10
1秒前
1秒前
打打应助chchjust采纳,获得10
1秒前
寒冷沛柔完成签到 ,获得积分10
1秒前
香蕉觅云应助王水良采纳,获得30
2秒前
2秒前
2秒前
meiqiu完成签到,获得积分10
3秒前
昏睡的一一完成签到,获得积分10
3秒前
陈一一完成签到 ,获得积分10
3秒前
4秒前
cc发布了新的文献求助10
4秒前
4秒前
清脆的丹南完成签到,获得积分20
5秒前
better完成签到,获得积分10
6秒前
6秒前
友好梦岚完成签到,获得积分20
7秒前
exquisite完成签到,获得积分10
7秒前
阿曼尼完成签到 ,获得积分10
7秒前
7秒前
啵啵虎发布了新的文献求助10
8秒前
明明ming999_完成签到,获得积分10
8秒前
Sealight完成签到,获得积分10
8秒前
star完成签到,获得积分10
8秒前
8秒前
烯灯完成签到,获得积分10
9秒前
9秒前
hai发布了新的文献求助30
10秒前
水电费完成签到 ,获得积分10
10秒前
翊然甜周发布了新的文献求助20
10秒前
ANNI发布了新的文献求助10
10秒前
MY关闭了MY文献求助
11秒前
凳子琪完成签到,获得积分10
12秒前
二师兄发布了新的文献求助10
12秒前
12秒前
sue402完成签到,获得积分10
12秒前
彭于晏应助壮观的白枫采纳,获得10
13秒前
翔哥完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423