Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging

医学 靛蓝胭脂红 白光 窄带成像 靛蓝 核医学 病变 预测值 人工智能 放射科 对比度(视觉) 光学 病理 内窥镜检查 内科学 计算机科学 化学 物理 核化学
作者
Sayaka Nagao,Yosuke Tsuji,Yoshiki Sakaguchi,Yu Takahashi,Chihiro Minatsuki,Kaoru Niimi,Hiroharu Yamashita,Nobutake Yamamichi,Yasuyuki Seto,Takeshi Tada,Kazuhiko Koike
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:92 (4): 866-873.e1 被引量:79
标识
DOI:10.1016/j.gie.2020.06.047
摘要

Diagnosing the invasion depth of gastric cancer (GC) is necessary to determine the optimal method of treatment. Although the efficacy of evaluating macroscopic features and EUS has been reported, there is a need for more accurate and objective methods. The primary aim of this study was to test the efficacy of novel artificial intelligence (AI) systems in predicting the invasion depth of GC.A total of 16,557 images from 1084 cases of GC for which endoscopic resection or surgery was performed between January 2013 and June 2019 were extracted. Cases were randomly assigned to training and test datasets at a ratio of 4:1. Through transfer learning leveraging a convolutional neural network architecture, ResNet50, 3 independent AI systems were developed. Each system was trained to predict the invasion depth of GC using conventional white-light imaging (WLI), nonmagnifying narrow-band imaging (NBI), and indigo-carmine dye contrast imaging (Indigo).The area under the curve of the WLI AI system was .9590. The lesion-based sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the WLI AI system were 84.4%, 99.4%, 94.5%, 98.5%, and 92.9%, respectively. The lesion-based accuracies of the WLI, NBI, and Indigo AI systems were 94.5%, 94.3%, and 95.5%, respectively, with no significant difference.These new AI systems trained with multiple images from different angles and distances could predict the invasion depth of GC with high accuracy. The lesion-based accuracy of the WLI, NBI, and Indigo AI systems was not significantly different.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kirisame完成签到,获得积分10
1秒前
1秒前
2秒前
赘婿应助zoe采纳,获得10
2秒前
风柳发布了新的文献求助10
3秒前
fff发布了新的文献求助10
3秒前
暮封完成签到,获得积分20
3秒前
熊二浪发布了新的文献求助10
3秒前
3秒前
georgett完成签到,获得积分10
4秒前
明芷蝶完成签到,获得积分10
4秒前
5秒前
梅列军完成签到 ,获得积分10
5秒前
彳亍1117应助lemon采纳,获得20
5秒前
6秒前
暮霭沉沉应助LACIA采纳,获得10
6秒前
王灿灿发布了新的文献求助10
6秒前
6秒前
lizz关注了科研通微信公众号
6秒前
7秒前
7秒前
人群是那么像羊群完成签到 ,获得积分10
10秒前
YYL完成签到,获得积分10
10秒前
希望天下0贩的0应助Judy采纳,获得10
10秒前
花杨梅发布了新的文献求助10
11秒前
科研小狗发布了新的文献求助10
11秒前
盼盼小面包完成签到,获得积分10
11秒前
我是老大应助阿鹏采纳,获得10
12秒前
12秒前
12秒前
564654SDA完成签到,获得积分10
12秒前
13秒前
13秒前
多情怜蕾发布了新的文献求助10
13秒前
甜蜜滑板发布了新的文献求助10
14秒前
hiswen完成签到,获得积分10
14秒前
薇薇辣完成签到,获得积分10
14秒前
勤奋的绿柏完成签到,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794