Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging

医学 靛蓝胭脂红 白光 窄带成像 靛蓝 核医学 病变 预测值 人工智能 放射科 对比度(视觉) 光学 病理 内窥镜检查 内科学 计算机科学 化学 物理 核化学
作者
Sayaka Nagao,Yosuke Tsuji,Yoshiki Sakaguchi,Yu Takahashi,Chihiro Minatsuki,Kaoru Niimi,Hiroharu Yamashita,Nobutake Yamamichi,Yasuyuki Seto,Takeshi Tada,Kazuhiko Koike
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:92 (4): 866-873.e1 被引量:79
标识
DOI:10.1016/j.gie.2020.06.047
摘要

Diagnosing the invasion depth of gastric cancer (GC) is necessary to determine the optimal method of treatment. Although the efficacy of evaluating macroscopic features and EUS has been reported, there is a need for more accurate and objective methods. The primary aim of this study was to test the efficacy of novel artificial intelligence (AI) systems in predicting the invasion depth of GC.A total of 16,557 images from 1084 cases of GC for which endoscopic resection or surgery was performed between January 2013 and June 2019 were extracted. Cases were randomly assigned to training and test datasets at a ratio of 4:1. Through transfer learning leveraging a convolutional neural network architecture, ResNet50, 3 independent AI systems were developed. Each system was trained to predict the invasion depth of GC using conventional white-light imaging (WLI), nonmagnifying narrow-band imaging (NBI), and indigo-carmine dye contrast imaging (Indigo).The area under the curve of the WLI AI system was .9590. The lesion-based sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the WLI AI system were 84.4%, 99.4%, 94.5%, 98.5%, and 92.9%, respectively. The lesion-based accuracies of the WLI, NBI, and Indigo AI systems were 94.5%, 94.3%, and 95.5%, respectively, with no significant difference.These new AI systems trained with multiple images from different angles and distances could predict the invasion depth of GC with high accuracy. The lesion-based accuracy of the WLI, NBI, and Indigo AI systems was not significantly different.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue发布了新的文献求助10
1秒前
来自三百发布了新的文献求助30
1秒前
搜集达人应助书生采纳,获得10
1秒前
2秒前
2秒前
4秒前
mingming发布了新的文献求助10
4秒前
打打应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
FIN应助科研通管家采纳,获得30
5秒前
风清扬应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
奥特超曼应助科研通管家采纳,获得20
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
努力发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Windsyang完成签到,获得积分10
8秒前
9秒前
FashionBoy应助xue采纳,获得10
9秒前
10秒前
可爱的函函应助医者修心采纳,获得20
12秒前
lc完成签到,获得积分10
13秒前
Friday完成签到,获得积分20
14秒前
lor完成签到,获得积分10
14秒前
张道微发布了新的文献求助10
15秒前
医者修心完成签到,获得积分20
15秒前
太叔夜南完成签到,获得积分10
16秒前
zhl发布了新的文献求助10
16秒前
SciGPT应助mingming采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712