An Error Identification and Compensation Method of a 6-DoF Parallel Kinematic Machine

运动学 计算机科学 控制理论(社会学) 可识别性 校准 斯图尔特站台 非线性系统 补偿(心理学) 算法 人工智能 数学 控制(管理) 机器学习 经典力学 统计 物理 量子力学 心理学 精神分析
作者
Zhiyuan He,Binbin Lian,Qi Li,Yue Zhang,Yimin Song,Yong Yang,Tao Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 119038-119047 被引量:15
标识
DOI:10.1109/access.2020.3005141
摘要

Kinematic Calibration is an effective and economical way to improve the accuracy of the six degree-of-freedom (DoF) parallel kinematic machine (PKM), named as Stewart platform, for the large component assembly in aviation or aerospace. The conventional online calibration requires a powerful and complicated control system, whereas the current offline calibration methods are not satisfactory in terms of the compromise between efficiency and accuracy. This paper proposes a semi-online calibration method in which the geometric errors are identified offline and compensated online. The geometric errors are inserted into the inverse kinematic model. Instead of formulating the linear mapping model between geometric errors and the pose error of moving platform, the error model is written as the function of geometric errors with respect to the actuation inputs. Hence, a nonlinear error model is obtained. Without worrying about the identifiability, the error identification equations are converted into an optimization problem and solved by the hybrid genetic algorithm (HGA). In the traditional offline compensation, the identified kinematic parameters are adopted to modify the nominal kinematic model, which is inconvenient when the control system is not transparent to the users. A new control block that calculating the equivalent actuation inputs from the identified errors is added to the control flow. The errors are compensated in an efficient manner. Simulations and experiments are implemented to validate the accuracy, efficiency and convenience of the proposed method. The results indicate that our approach improves position and orientation accuracy of the Stewart platform by 85.1% and 91.0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Spoiled采纳,获得10
刚刚
tuanheqi应助ProfWang采纳,获得30
1秒前
田様应助方黎昕采纳,获得10
2秒前
搜集达人应助大力日记本采纳,获得10
3秒前
希望天下0贩的0应助小西采纳,获得10
4秒前
7秒前
8秒前
8秒前
烟花应助ylc采纳,获得10
8秒前
小詹完成签到,获得积分10
9秒前
Ava应助之星君采纳,获得10
9秒前
万能图书馆应助曾艳采纳,获得10
10秒前
10秒前
孤独梦安完成签到,获得积分10
11秒前
朴实的无极完成签到,获得积分10
12秒前
城辰完成签到,获得积分10
12秒前
王仙人发布了新的文献求助10
13秒前
文艺代丝发布了新的文献求助10
14秒前
15秒前
陈预立完成签到,获得积分10
16秒前
17秒前
星辰大海应助然大宝采纳,获得10
17秒前
慕青应助王仙人采纳,获得10
18秒前
19秒前
21秒前
慕青应助勤恳皮卡丘采纳,获得10
21秒前
22秒前
之星君发布了新的文献求助10
23秒前
李博士完成签到,获得积分10
23秒前
盛夏发布了新的文献求助20
23秒前
bkagyin应助文文文采纳,获得10
24秒前
24秒前
24秒前
宗友绿完成签到,获得积分10
25秒前
曾艳发布了新的文献求助10
25秒前
思源应助童白翠采纳,获得10
26秒前
自觉的满天完成签到,获得积分10
26秒前
一一应助完美的海秋采纳,获得10
26秒前
Jasper应助没有昵称采纳,获得10
26秒前
缥缈丹云应助绝不拖延采纳,获得10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241300
求助须知:如何正确求助?哪些是违规求助? 2885813
关于积分的说明 8240715
捐赠科研通 2554345
什么是DOI,文献DOI怎么找? 1382498
科研通“疑难数据库(出版商)”最低求助积分说明 649586
邀请新用户注册赠送积分活动 625248