An Error Identification and Compensation Method of a 6-DoF Parallel Kinematic Machine

运动学 计算机科学 控制理论(社会学) 可识别性 校准 斯图尔特站台 非线性系统 补偿(心理学) 算法 人工智能 数学 控制(管理) 机器学习 经典力学 统计 物理 量子力学 心理学 精神分析
作者
Zhiyuan He,Binbin Lian,Qi Li,Yue Zhang,Yimin Song,Yong Yang,Tao Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 119038-119047 被引量:15
标识
DOI:10.1109/access.2020.3005141
摘要

Kinematic Calibration is an effective and economical way to improve the accuracy of the six degree-of-freedom (DoF) parallel kinematic machine (PKM), named as Stewart platform, for the large component assembly in aviation or aerospace. The conventional online calibration requires a powerful and complicated control system, whereas the current offline calibration methods are not satisfactory in terms of the compromise between efficiency and accuracy. This paper proposes a semi-online calibration method in which the geometric errors are identified offline and compensated online. The geometric errors are inserted into the inverse kinematic model. Instead of formulating the linear mapping model between geometric errors and the pose error of moving platform, the error model is written as the function of geometric errors with respect to the actuation inputs. Hence, a nonlinear error model is obtained. Without worrying about the identifiability, the error identification equations are converted into an optimization problem and solved by the hybrid genetic algorithm (HGA). In the traditional offline compensation, the identified kinematic parameters are adopted to modify the nominal kinematic model, which is inconvenient when the control system is not transparent to the users. A new control block that calculating the equivalent actuation inputs from the identified errors is added to the control flow. The errors are compensated in an efficient manner. Simulations and experiments are implemented to validate the accuracy, efficiency and convenience of the proposed method. The results indicate that our approach improves position and orientation accuracy of the Stewart platform by 85.1% and 91.0%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡他发布了新的文献求助10
刚刚
雨乐发布了新的文献求助10
2秒前
suntee发布了新的文献求助10
2秒前
4秒前
33333完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
KKKK发布了新的文献求助10
5秒前
6秒前
木易木土完成签到,获得积分10
7秒前
7秒前
天天快乐应助Fan采纳,获得10
7秒前
yu关闭了yu文献求助
8秒前
Jasper应助ychen采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
十月完成签到,获得积分10
12秒前
能干巨人应助科研通管家采纳,获得10
12秒前
aaa完成签到,获得积分10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
一剑温柔发布了新的文献求助10
14秒前
15秒前
大模型应助li17195采纳,获得10
15秒前
16秒前
16秒前
orixero应助标致的甜瓜采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704