An Error Identification and Compensation Method of a 6-DoF Parallel Kinematic Machine

运动学 计算机科学 控制理论(社会学) 可识别性 校准 斯图尔特站台 非线性系统 补偿(心理学) 算法 人工智能 数学 控制(管理) 机器学习 经典力学 统计 物理 量子力学 心理学 精神分析
作者
Zhiyuan He,Binbin Lian,Qi Li,Yue Zhang,Yimin Song,Yong Yang,Tao Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 119038-119047 被引量:15
标识
DOI:10.1109/access.2020.3005141
摘要

Kinematic Calibration is an effective and economical way to improve the accuracy of the six degree-of-freedom (DoF) parallel kinematic machine (PKM), named as Stewart platform, for the large component assembly in aviation or aerospace. The conventional online calibration requires a powerful and complicated control system, whereas the current offline calibration methods are not satisfactory in terms of the compromise between efficiency and accuracy. This paper proposes a semi-online calibration method in which the geometric errors are identified offline and compensated online. The geometric errors are inserted into the inverse kinematic model. Instead of formulating the linear mapping model between geometric errors and the pose error of moving platform, the error model is written as the function of geometric errors with respect to the actuation inputs. Hence, a nonlinear error model is obtained. Without worrying about the identifiability, the error identification equations are converted into an optimization problem and solved by the hybrid genetic algorithm (HGA). In the traditional offline compensation, the identified kinematic parameters are adopted to modify the nominal kinematic model, which is inconvenient when the control system is not transparent to the users. A new control block that calculating the equivalent actuation inputs from the identified errors is added to the control flow. The errors are compensated in an efficient manner. Simulations and experiments are implemented to validate the accuracy, efficiency and convenience of the proposed method. The results indicate that our approach improves position and orientation accuracy of the Stewart platform by 85.1% and 91.0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwj完成签到,获得积分10
刚刚
phw2333发布了新的文献求助20
1秒前
小馒头发布了新的文献求助30
1秒前
沧笙踏歌发布了新的文献求助10
2秒前
凌凌凌完成签到,获得积分10
2秒前
3秒前
DRHOUSE完成签到,获得积分10
3秒前
3秒前
凌凌凌发布了新的文献求助10
7秒前
文静千凡发布了新的文献求助10
8秒前
直率铁身完成签到,获得积分10
10秒前
czjch1209发布了新的文献求助10
10秒前
熄熄完成签到 ,获得积分10
12秒前
boogie完成签到,获得积分10
12秒前
迷你的母鸡完成签到 ,获得积分10
13秒前
14秒前
逝水完成签到 ,获得积分10
14秒前
畅畅完成签到 ,获得积分10
14秒前
Rave完成签到 ,获得积分10
15秒前
研都不研了完成签到 ,获得积分10
16秒前
yeyeyeyeyeyeyeye完成签到,获得积分10
16秒前
共享精神应助伯云采纳,获得10
16秒前
smile完成签到,获得积分10
16秒前
yuyan完成签到,获得积分10
17秒前
17秒前
良言完成签到 ,获得积分10
18秒前
18秒前
ZSH发布了新的文献求助10
18秒前
怡然的迎波完成签到,获得积分10
19秒前
addd完成签到,获得积分10
19秒前
星辰大海应助阳佟仇天采纳,获得10
20秒前
Lucas应助harmory采纳,获得30
20秒前
无花果应助yeyeyeyeyeyeyeye采纳,获得10
22秒前
22秒前
23秒前
liusha完成签到,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
26秒前
黄景瑜发布了新的文献求助10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309