Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles

辐射冷却 涂层 发射率 材料科学 辐射传输 低发射率 辐射通量 光学 粒子(生态学) 复合材料 物理 热力学 海洋学 地质学
作者
Ziming Cheng,Yong Shuai,Gong Dayang,Fuqiang Wang,Huaxu Liang,Guiqiang Li
出处
期刊:Science China-technological Sciences [Springer Nature]
卷期号:64 (5): 1017-1029 被引量:68
标识
DOI:10.1007/s11431-020-1586-9
摘要

Radiative cooling can achieve cooling effect without consuming any energy by delivering energy into outer space (3 K) through “atmospheric window” (8–13 μm). Conventional radiative cooling coating with multi-layer structure was severely restricted during application due to its complex preparation process and high cost. In this study, a single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles was proposed. The algorithm for calculating the radiative properties of the multi-particle system was developed. Monte Carlo ray-tracing method combined with that algorithm was used to solve the radiative transfer equation (RTE) of the single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. The effects of particle diameter, volume fraction and coating thickness on radiative cooling performance were analyzed to obtain the best radiative cooling performance. The numerical results indicated that the average reflectivity of the single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles in the solar spectrum can reach 95.6%, while and the average emissivity in the “atmospheric window” spectrum can reach 94.9% without additional silver-reflectance layer. The average reflectivity in the solar spectrum and average emissivity in the “atmospheric window” spectrum of the single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles can increase 4.6% and 4.8% compared to the double-layer radiative cooling coating. This numerical research results can provide a theoretical guidance for design and optimization of single-layer radiative cooling coatings containing mixed nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123号发布了新的文献求助10
1秒前
Chen发布了新的文献求助10
2秒前
汉堡包应助caoyy采纳,获得10
2秒前
阳阳发布了新的文献求助10
2秒前
田所浩二完成签到 ,获得积分10
2秒前
2秒前
华仔应助奶糖采纳,获得30
3秒前
动力小滋完成签到,获得积分10
3秒前
ding应助瑶一瑶采纳,获得10
6秒前
fmwang完成签到,获得积分10
7秒前
万能图书馆应助Zxc采纳,获得10
7秒前
Rainbow完成签到,获得积分10
7秒前
小小郭完成签到 ,获得积分10
7秒前
9秒前
Orange应助务实的犀牛采纳,获得10
9秒前
追寻飞风完成签到,获得积分10
9秒前
wenli完成签到,获得积分10
10秒前
10秒前
11秒前
Schmoo完成签到,获得积分10
12秒前
14秒前
圆圆的脑袋应助涛浪采纳,获得10
15秒前
隐形曼青应助皮皮桂采纳,获得10
16秒前
凝子老师完成签到,获得积分10
16秒前
奶糖发布了新的文献求助30
16秒前
TORCH完成签到 ,获得积分10
18秒前
李健的小迷弟应助lin采纳,获得10
18秒前
18秒前
19秒前
TT发布了新的文献求助10
19秒前
奶糖完成签到,获得积分10
22秒前
丘比特应助浪迹天涯采纳,获得10
23秒前
25秒前
25秒前
虚幻白玉发布了新的文献求助10
26秒前
清客完成签到 ,获得积分10
26秒前
传奇3应助阳阳采纳,获得10
26秒前
28秒前
皮皮桂发布了新的文献求助10
28秒前
Hello应助无奈傲菡采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849