VLCnet: Deep Learning Based End-to-End Visible Light Communication System

可见光通信 计算机科学 闪烁 通信系统 字错误率 频道(广播) 误码率 新颖性 实时计算 噪音(视频) 深度学习 推论 人工神经网络 人工智能 电子工程 电信 发光二极管 工程类 电气工程 操作系统 图像(数学) 哲学 神学
作者
Mehmet Görkem Ulkar,Tunçer Baykaş,Alí Emre Pusane
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (21): 5937-5948 被引量:19
标识
DOI:10.1109/jlt.2020.3006827
摘要

Visible light communication is a popular research area where proposed communication methods must satisfy the lighting related requirements as well. Suggested VLC modules should not only improve communication quality such as decreasing error rates but also comply with other lighting related constraints such as sustaining certain level of illumination. This increases the complexity of the optimization problem. Moreover, most of the time the suggested modules focus on a specific block of communication system which downgrades the system-wide performance on coming together. To solve this complex problem and jointly optimize the whole system, we suggest a deep learning based method, VLCnet. Despite the increasing number of neural network based channel decoders in the literature, few of them are addressing real-life application constraints. VLCnet is an error rate decreasing solution which takes into account, reducing flicker and sustaining certain illumination level. Moreover, our channel impulse response (CIR) is taken from reference CIRs for VLC and our study considers the input-dependent noise originated by the shot noise for the sake of generality. Flicker reducing activation units (FRAU) are the key part of VLCnet and the main novelty of this publication. FRAU is an example of a competitive layer and ensures run length limitation for flicker reduction. Both with input-independent and dependent noise, simulation results show performance superiority of the proposed VLCnet method. Although they have different setups, all results demonstrate the benefit of training with certain amount of noise. From the practicality perspective, proposed system is easy to be deployed since inference operation does not have iterations unlike most of the conventional detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助rrrrr采纳,获得10
1秒前
宇宇宇c完成签到,获得积分10
2秒前
十三州府完成签到,获得积分10
2秒前
stories完成签到,获得积分20
2秒前
3秒前
qi发布了新的文献求助10
3秒前
开心小小发布了新的文献求助10
4秒前
狂野的海雪完成签到,获得积分10
5秒前
6秒前
可口可乐了完成签到,获得积分10
6秒前
sye发布了新的文献求助20
8秒前
传奇3应助leo采纳,获得10
8秒前
guangyu完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
xjcy应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
xjcy应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助狗剩采纳,获得10
10秒前
王爷教你白给完成签到 ,获得积分10
10秒前
11秒前
11秒前
于小野发布了新的文献求助10
12秒前
受伤的靖琪完成签到,获得积分10
12秒前
morena发布了新的文献求助10
13秒前
ShowMaker举报爱喝水求助涉嫌违规
14秒前
CipherSage应助孙小雨采纳,获得10
14秒前
稞小弟发布了新的文献求助10
15秒前
科研通AI2S应助zp采纳,获得10
15秒前
内向的水儿完成签到,获得积分10
16秒前
16秒前
txf发布了新的文献求助10
16秒前
rrrrr给rrrrr的求助进行了留言
17秒前
junzpeng发布了新的文献求助10
18秒前
ShowMaker给爱喝水的求助进行了留言
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503