An intra-operative feature-based classification of microelectrode recordings to support the subthalamic nucleus functional identification during deep brain stimulation surgery

脑深部刺激 丘脑底核 人工智能 计算机科学 模式识别(心理学) 帕金森病 医学 病理 疾病
作者
Stefania Coelli,Vincenzo Levi,J. Del Vecchio Del Vecchio,Enrico Mailland,Sara Rinaldo,Roberto Eleopra,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (1): 016003-016003 被引量:3
标识
DOI:10.1088/1741-2552/abcb15
摘要

Objective. The subthalamic nucleus (STN) is the most selected target for the placement of the Deep Brain Stimulation (DBS) electrode to treat Parkinson's disease. Its identification is a delicate and challenging task which is based on the interpretation of the STN functional activity acquired through microelectrode recordings (MERs). Aim of this work is to explore the potentiality of a set of 25 features to build a classification model for the discrimination of MER signals belonging to the STN.Approach.We explored the use of different sets of spike-dependent and spike-independent features in combination with an ensemble trees classification algorithm on a dataset composed of 13 patients receiving bilateral DBS. We compared results from six subsets of features and two dataset conditions (with and without standardization) using performance metrics on a leave-one-patient-out validation schema.Main results.We obtained statistically better results (i.e. higher accuracyp-value = 0.003) on the RAW dataset than on the standardized one, where the selection of seven features using a minimum redundancy maximum relevance algorithm provided a mean accuracy of 94.1%, comparable with the use of the full set of features. In the same conditions, the spike-dependent features provided the lowest accuracy (86.8%), while a power density-based index was shown to be a good indicator of STN activity (92.3%).Significance.Results suggest that a small and simple set of features can be used for an efficient classification of MERs to implement an intraoperative support for clinical decision during DBS surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_enPaaZ完成签到,获得积分10
刚刚
刚刚
SYLH应助虚心的静枫采纳,获得20
1秒前
清樾完成签到 ,获得积分10
1秒前
杳鸢应助yunghx采纳,获得10
1秒前
yznfly应助顺心醉蝶采纳,获得150
1秒前
研友_VZG7GZ应助飞先生采纳,获得10
2秒前
善学以致用应助华123采纳,获得10
2秒前
蒋j发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
优秀的枫完成签到,获得积分20
6秒前
木头人应助Yuuuuu采纳,获得10
6秒前
7秒前
7秒前
优秀的枫发布了新的文献求助10
10秒前
蒋j完成签到,获得积分10
10秒前
yznfly应助坤舆探骊者采纳,获得30
11秒前
12秒前
12秒前
tjzhaoll发布了新的文献求助10
12秒前
赘婿应助熬夜大王采纳,获得10
12秒前
wwpedd给zhongu的求助进行了留言
12秒前
14秒前
灵巧的大开完成签到,获得积分10
14秒前
RUSTY发布了新的文献求助10
15秒前
qhjqljqd发布了新的文献求助10
17秒前
aaa发布了新的文献求助10
18秒前
Lucas应助高贵的晓筠采纳,获得10
19秒前
魔幻的绮烟完成签到,获得积分10
20秒前
小杨完成签到 ,获得积分10
20秒前
完美世界应助Hang采纳,获得10
21秒前
燕子发布了新的文献求助10
22秒前
22秒前
万能图书馆应助liangyong采纳,获得10
23秒前
卡卡西应助李物采纳,获得20
23秒前
雪梨完成签到,获得积分10
24秒前
Catalina_S发布了新的文献求助20
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303