An intra-operative feature-based classification of microelectrode recordings to support the subthalamic nucleus functional identification during deep brain stimulation surgery

脑深部刺激 丘脑底核 人工智能 计算机科学 模式识别(心理学) 帕金森病 医学 病理 疾病
作者
Stefania Coelli,Vincenzo Levi,J. Del Vecchio Del Vecchio,Enrico Mailland,Sara Rinaldo,Roberto Eleopra,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (1): 016003-016003 被引量:3
标识
DOI:10.1088/1741-2552/abcb15
摘要

Objective. The subthalamic nucleus (STN) is the most selected target for the placement of the Deep Brain Stimulation (DBS) electrode to treat Parkinson's disease. Its identification is a delicate and challenging task which is based on the interpretation of the STN functional activity acquired through microelectrode recordings (MERs). Aim of this work is to explore the potentiality of a set of 25 features to build a classification model for the discrimination of MER signals belonging to the STN.Approach.We explored the use of different sets of spike-dependent and spike-independent features in combination with an ensemble trees classification algorithm on a dataset composed of 13 patients receiving bilateral DBS. We compared results from six subsets of features and two dataset conditions (with and without standardization) using performance metrics on a leave-one-patient-out validation schema.Main results.We obtained statistically better results (i.e. higher accuracyp-value = 0.003) on the RAW dataset than on the standardized one, where the selection of seven features using a minimum redundancy maximum relevance algorithm provided a mean accuracy of 94.1%, comparable with the use of the full set of features. In the same conditions, the spike-dependent features provided the lowest accuracy (86.8%), while a power density-based index was shown to be a good indicator of STN activity (92.3%).Significance.Results suggest that a small and simple set of features can be used for an efficient classification of MERs to implement an intraoperative support for clinical decision during DBS surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助帅气的雅琴采纳,获得20
刚刚
令水白发布了新的文献求助10
刚刚
刚刚
打打应助xjdb123采纳,获得10
刚刚
1秒前
1秒前
豆4799发布了新的文献求助10
1秒前
1秒前
guojingjing发布了新的文献求助10
2秒前
XUXU发布了新的文献求助10
2秒前
2秒前
我是老大应助judy123采纳,获得10
2秒前
2秒前
东方元语应助伍子丐的猫采纳,获得20
2秒前
量子星尘发布了新的文献求助10
3秒前
illusion完成签到,获得积分10
3秒前
3秒前
szj发布了新的文献求助30
3秒前
Zx_1993应助Yanhai采纳,获得10
3秒前
3秒前
4秒前
kkkkkkk完成签到,获得积分10
4秒前
5秒前
ddddd发布了新的文献求助30
5秒前
从容祥完成签到,获得积分20
5秒前
张小摆发布了新的文献求助10
5秒前
万能图书馆应助生动阁采纳,获得100
5秒前
SihanYin发布了新的文献求助10
6秒前
自由的蒜苗完成签到,获得积分10
6秒前
嘎嘎嘎发布了新的文献求助10
7秒前
7秒前
晓天完成签到,获得积分20
7秒前
7秒前
百里惊蛰完成签到,获得积分20
7秒前
7秒前
脑洞疼应助涛声依旧采纳,获得10
7秒前
8秒前
星辰发布了新的文献求助10
8秒前
8秒前
DONGmumu完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089