An intra-operative feature-based classification of microelectrode recordings to support the subthalamic nucleus functional identification during deep brain stimulation surgery

脑深部刺激 丘脑底核 人工智能 计算机科学 模式识别(心理学) 帕金森病 医学 病理 疾病
作者
Stefania Coelli,Vincenzo Levi,J. Del Vecchio Del Vecchio,Enrico Mailland,Sara Rinaldo,Roberto Eleopra,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (1): 016003-016003 被引量:3
标识
DOI:10.1088/1741-2552/abcb15
摘要

Objective. The subthalamic nucleus (STN) is the most selected target for the placement of the Deep Brain Stimulation (DBS) electrode to treat Parkinson's disease. Its identification is a delicate and challenging task which is based on the interpretation of the STN functional activity acquired through microelectrode recordings (MERs). Aim of this work is to explore the potentiality of a set of 25 features to build a classification model for the discrimination of MER signals belonging to the STN.Approach.We explored the use of different sets of spike-dependent and spike-independent features in combination with an ensemble trees classification algorithm on a dataset composed of 13 patients receiving bilateral DBS. We compared results from six subsets of features and two dataset conditions (with and without standardization) using performance metrics on a leave-one-patient-out validation schema.Main results.We obtained statistically better results (i.e. higher accuracyp-value = 0.003) on the RAW dataset than on the standardized one, where the selection of seven features using a minimum redundancy maximum relevance algorithm provided a mean accuracy of 94.1%, comparable with the use of the full set of features. In the same conditions, the spike-dependent features provided the lowest accuracy (86.8%), while a power density-based index was shown to be a good indicator of STN activity (92.3%).Significance.Results suggest that a small and simple set of features can be used for an efficient classification of MERs to implement an intraoperative support for clinical decision during DBS surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
明亮安双完成签到,获得积分10
2秒前
3秒前
lixiaotong发布了新的文献求助10
3秒前
SCH_zhu发布了新的文献求助20
3秒前
3秒前
mytx发布了新的文献求助30
3秒前
冷傲的道罡完成签到,获得积分10
4秒前
酷波er应助终醒采纳,获得10
4秒前
4秒前
梦XING发布了新的文献求助10
4秒前
小二郎应助俞辰采纳,获得10
4秒前
搜集达人应助玄天明月采纳,获得10
4秒前
可可西里发布了新的文献求助10
5秒前
陶醉笑蓝发布了新的文献求助30
5秒前
楠楠发布了新的文献求助10
5秒前
麻薯头头发布了新的文献求助10
6秒前
KY发布了新的文献求助10
6秒前
领导范儿应助mm采纳,获得10
6秒前
7秒前
Snoopy发布了新的文献求助10
8秒前
机灵班应助张原铭采纳,获得10
8秒前
pluto应助刘恋采纳,获得10
8秒前
Dys发布了新的文献求助10
8秒前
丘比特应助Zehn采纳,获得10
8秒前
小张完成签到,获得积分10
11秒前
sunrise完成签到,获得积分10
11秒前
可爱小张发布了新的文献求助10
11秒前
12秒前
Snoopy完成签到,获得积分10
12秒前
干净的翠琴完成签到,获得积分10
13秒前
13秒前
14秒前
问寒完成签到,获得积分10
15秒前
小音。应助zzzp采纳,获得10
15秒前
香蕉觅云应助啊姚爱学习采纳,获得10
15秒前
研友_VZG7GZ应助小张采纳,获得10
15秒前
16秒前
TRY发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297710
求助须知:如何正确求助?哪些是违规求助? 4446487
关于积分的说明 13839691
捐赠科研通 4331653
什么是DOI,文献DOI怎么找? 2377824
邀请新用户注册赠送积分活动 1373105
关于科研通互助平台的介绍 1338650