已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intra-operative feature-based classification of microelectrode recordings to support the subthalamic nucleus functional identification during deep brain stimulation surgery

脑深部刺激 丘脑底核 人工智能 计算机科学 模式识别(心理学) 帕金森病 医学 病理 疾病
作者
Stefania Coelli,Vincenzo Levi,J. Del Vecchio Del Vecchio,Enrico Mailland,Sara Rinaldo,Roberto Eleopra,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (1): 016003-016003 被引量:3
标识
DOI:10.1088/1741-2552/abcb15
摘要

Objective. The subthalamic nucleus (STN) is the most selected target for the placement of the Deep Brain Stimulation (DBS) electrode to treat Parkinson's disease. Its identification is a delicate and challenging task which is based on the interpretation of the STN functional activity acquired through microelectrode recordings (MERs). Aim of this work is to explore the potentiality of a set of 25 features to build a classification model for the discrimination of MER signals belonging to the STN.Approach.We explored the use of different sets of spike-dependent and spike-independent features in combination with an ensemble trees classification algorithm on a dataset composed of 13 patients receiving bilateral DBS. We compared results from six subsets of features and two dataset conditions (with and without standardization) using performance metrics on a leave-one-patient-out validation schema.Main results.We obtained statistically better results (i.e. higher accuracyp-value = 0.003) on the RAW dataset than on the standardized one, where the selection of seven features using a minimum redundancy maximum relevance algorithm provided a mean accuracy of 94.1%, comparable with the use of the full set of features. In the same conditions, the spike-dependent features provided the lowest accuracy (86.8%), while a power density-based index was shown to be a good indicator of STN activity (92.3%).Significance.Results suggest that a small and simple set of features can be used for an efficient classification of MERs to implement an intraoperative support for clinical decision during DBS surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛乃唐完成签到 ,获得积分10
3秒前
5秒前
傲娇的棉花糖完成签到 ,获得积分10
5秒前
伟川周完成签到 ,获得积分10
5秒前
何hyy完成签到,获得积分10
6秒前
香山叶正红完成签到 ,获得积分10
7秒前
abandon发布了新的文献求助10
11秒前
荷兰香猪完成签到,获得积分10
11秒前
涵涵涵hh完成签到 ,获得积分10
14秒前
七号在野闪闪完成签到 ,获得积分10
14秒前
18秒前
21秒前
Zr发布了新的文献求助10
22秒前
22秒前
GingerF应助科研通管家采纳,获得50
23秒前
orixero应助科研通管家采纳,获得10
23秒前
GingerF应助科研通管家采纳,获得50
23秒前
浮游应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
GingerF应助科研通管家采纳,获得50
23秒前
GingerF应助科研通管家采纳,获得50
23秒前
GingerF应助科研通管家采纳,获得50
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
26秒前
mwm完成签到 ,获得积分10
26秒前
Zr完成签到,获得积分10
30秒前
wtt完成签到,获得积分10
32秒前
大爱人生完成签到 ,获得积分10
34秒前
yaosan完成签到,获得积分10
34秒前
学术脑袋完成签到 ,获得积分10
36秒前
40秒前
自然完成签到,获得积分10
40秒前
echo发布了新的文献求助10
40秒前
快乐的易巧完成签到,获得积分10
42秒前
听雨落声完成签到 ,获得积分10
44秒前
46秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136576
求助须知:如何正确求助?哪些是违规求助? 4336698
关于积分的说明 13510319
捐赠科研通 4174759
什么是DOI,文献DOI怎么找? 2289071
邀请新用户注册赠送积分活动 1289750
关于科研通互助平台的介绍 1231062