An intra-operative feature-based classification of microelectrode recordings to support the subthalamic nucleus functional identification during deep brain stimulation surgery

脑深部刺激 丘脑底核 人工智能 计算机科学 模式识别(心理学) 帕金森病 医学 病理 疾病
作者
Stefania Coelli,Vincenzo Levi,J. Del Vecchio Del Vecchio,Enrico Mailland,Sara Rinaldo,Roberto Eleopra,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (1): 016003-016003 被引量:3
标识
DOI:10.1088/1741-2552/abcb15
摘要

Objective. The subthalamic nucleus (STN) is the most selected target for the placement of the Deep Brain Stimulation (DBS) electrode to treat Parkinson's disease. Its identification is a delicate and challenging task which is based on the interpretation of the STN functional activity acquired through microelectrode recordings (MERs). Aim of this work is to explore the potentiality of a set of 25 features to build a classification model for the discrimination of MER signals belonging to the STN.Approach.We explored the use of different sets of spike-dependent and spike-independent features in combination with an ensemble trees classification algorithm on a dataset composed of 13 patients receiving bilateral DBS. We compared results from six subsets of features and two dataset conditions (with and without standardization) using performance metrics on a leave-one-patient-out validation schema.Main results.We obtained statistically better results (i.e. higher accuracyp-value = 0.003) on the RAW dataset than on the standardized one, where the selection of seven features using a minimum redundancy maximum relevance algorithm provided a mean accuracy of 94.1%, comparable with the use of the full set of features. In the same conditions, the spike-dependent features provided the lowest accuracy (86.8%), while a power density-based index was shown to be a good indicator of STN activity (92.3%).Significance.Results suggest that a small and simple set of features can be used for an efficient classification of MERs to implement an intraoperative support for clinical decision during DBS surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你要学好完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
0128lun完成签到,获得积分10
1秒前
2秒前
科研小白完成签到,获得积分20
2秒前
逆风起笔发布了新的文献求助10
2秒前
2秒前
like完成签到,获得积分10
2秒前
无限的山水完成签到,获得积分10
3秒前
方圆几里完成签到,获得积分10
3秒前
英姑应助静槐采纳,获得10
3秒前
3秒前
飞翔的蒲公英完成签到,获得积分10
3秒前
欣喜的代容完成签到 ,获得积分10
3秒前
xxx完成签到,获得积分10
3秒前
luchen发布了新的文献求助10
4秒前
多情翠丝完成签到,获得积分10
4秒前
zsy发布了新的文献求助10
5秒前
漫梦qiqi发布了新的文献求助10
6秒前
6秒前
无奈书包发布了新的文献求助10
6秒前
TO完成签到,获得积分10
6秒前
丿小智灬发布了新的文献求助10
7秒前
Hello应助多情翠丝采纳,获得10
7秒前
ikun完成签到 ,获得积分10
8秒前
Lucas应助旦皋采纳,获得10
8秒前
川农辅导员完成签到,获得积分10
9秒前
晴雨之间完成签到,获得积分10
9秒前
nyfz2002发布了新的文献求助10
10秒前
galaxybalaaa完成签到,获得积分10
10秒前
闵凝竹完成签到 ,获得积分10
10秒前
10秒前
彬墩墩完成签到,获得积分10
10秒前
大气惜天完成签到 ,获得积分10
11秒前
12秒前
一颗辣白菜叶完成签到 ,获得积分10
12秒前
逆风起笔完成签到,获得积分10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167356
求助须知:如何正确求助?哪些是违规求助? 2818845
关于积分的说明 7923006
捐赠科研通 2478644
什么是DOI,文献DOI怎么找? 1320424
科研通“疑难数据库(出版商)”最低求助积分说明 632786
版权声明 602443