山茶
生物
转录组
转录因子
亚科
基因
非生物成分
非生物胁迫
植物
基因表达
遗传学
生态学
作者
Zhi‐Jun Wu,Xinghui Li,Zhiwei Liu,Hui Li,Yongxin Wang,Jing Zhuang
标识
DOI:10.1007/s10142-015-0457-9
摘要
Tea plant (Camellia sinensis) is an important natural resource for the global supply of non-alcoholic beverage production. The extension of tea plant cultivation is challenged by biotic and abiotic stresses. Transcription factors (TFs) of the APETALA 2 (AP2)/ethylene-responsive factor (ERF) family are involved in growth and anti-stresses through multifaceted transcriptional regulation in plants. This study comprehensively analyzed AP2/ERF family TFs from C. sinensis on the basis of the transcriptome sequencing data of four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. A total of 89 putative AP2/ERF transcription factors with full-length AP2 domain were identified from C. sinensis and classified into five subfamilies, namely, AP2, dehydration-responsive-element-binding (DREB), ERF, related to ABI3/VP (RAV), and Soloist. All identified CsAP2/ERF genes presented relatively stable expression levels in the four tea plant cultivars. Many groups also showed cultivar specificity. Five CsAP2/ERF genes from each AP2/ERF subfamily (DREB, ERF, AP2, and RAV) were related to temperature stresses; these results indicated that AP2/ERF TFs may play important roles in abnormal temperature stress response in C. sinensis.
科研通智能强力驱动
Strongly Powered by AbleSci AI