A Robust Maximum‐Likelihood Earthquake Location Method for Early Warning

最大似然 预警系统 地震学 地震位置 地质学 计算机科学 统计 数学 电信 诱发地震
作者
Dong‐Hoon Sheen
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:105 (3): 1301-1313 被引量:5
标识
DOI:10.1785/0120140188
摘要

This study proposes a robust method that estimates a reliable earthquake location from only a small number of P ‐wave arrival times. The method is based on the maximum‐likelihood estimation from differential P ‐wave arrivals. We formulate the problem using a probability density function (PDF) of the residual between observed and predicted differential P ‐wave travel times between two seismic stations and construct the likelihood function from the sum of the products of the independent PDFs. The hypocenter is determined by an iterative grid‐search algorithm that finds the point with the largest probability on successively finer grids. To reduce the effect from outliers possibly concealed within a small number of observations, the Student’s t ‐distribution is used for the PDF of the location likelihood. The jackknife resampling technique is also used to discriminate outliers from the observations. The robustness of the method is tested using the Monte Carlo experiments that locate 10,000 events from small numbers of P ‐wave arrivals observed within an epicentral distance of 100 km, including both arrival‐time error and velocity‐model error. The earthquakes are located within an epicentral distance of 8.5±10.8  km and 20.6±33.1  km for events inside the seismic network and outside the network, respectively, using only five P ‐wave arrivals, including a large arrival‐time error between ±1 and 5 s. This shows that this method can estimate the location of the event reliably with only a few P ‐wave arrivals, even when contaminated by an outlier. Therefore, it is believed that this location method could significantly improve the robustness of an earthquake early warning system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉水风发布了新的文献求助10
1秒前
1秒前
1秒前
xdd发布了新的文献求助10
1秒前
小鱼儿发布了新的文献求助10
2秒前
cxc关注了科研通微信公众号
2秒前
核动力驴发布了新的文献求助10
2秒前
3秒前
冷眸完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
阔达摩托完成签到,获得积分10
4秒前
善学以致用应助mmol采纳,获得10
5秒前
5秒前
风车完成签到,获得积分10
5秒前
英俊的铭应助可可爱爱刘采纳,获得10
6秒前
大个应助dusum采纳,获得10
6秒前
漂亮忆南发布了新的文献求助10
6秒前
6秒前
7秒前
星空完成签到,获得积分10
7秒前
阔达摩托发布了新的文献求助10
7秒前
7秒前
超级大神发布了新的文献求助10
7秒前
圈圈发布了新的文献求助10
7秒前
冷眸发布了新的文献求助10
7秒前
向黎发布了新的文献求助10
8秒前
8秒前
方森岩完成签到,获得积分10
8秒前
www发布了新的文献求助10
9秒前
Yuki发布了新的文献求助10
9秒前
10秒前
10秒前
yaoqi发布了新的文献求助10
11秒前
苏轼完成签到,获得积分10
11秒前
我爱学习发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994