A Robust Maximum‐Likelihood Earthquake Location Method for Early Warning

最大似然 预警系统 地震学 地震位置 地质学 计算机科学 统计 数学 电信 诱发地震
作者
Dong‐Hoon Sheen
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:105 (3): 1301-1313 被引量:5
标识
DOI:10.1785/0120140188
摘要

This study proposes a robust method that estimates a reliable earthquake location from only a small number of P ‐wave arrival times. The method is based on the maximum‐likelihood estimation from differential P ‐wave arrivals. We formulate the problem using a probability density function (PDF) of the residual between observed and predicted differential P ‐wave travel times between two seismic stations and construct the likelihood function from the sum of the products of the independent PDFs. The hypocenter is determined by an iterative grid‐search algorithm that finds the point with the largest probability on successively finer grids. To reduce the effect from outliers possibly concealed within a small number of observations, the Student’s t ‐distribution is used for the PDF of the location likelihood. The jackknife resampling technique is also used to discriminate outliers from the observations. The robustness of the method is tested using the Monte Carlo experiments that locate 10,000 events from small numbers of P ‐wave arrivals observed within an epicentral distance of 100 km, including both arrival‐time error and velocity‐model error. The earthquakes are located within an epicentral distance of 8.5±10.8  km and 20.6±33.1  km for events inside the seismic network and outside the network, respectively, using only five P ‐wave arrivals, including a large arrival‐time error between ±1 and 5 s. This shows that this method can estimate the location of the event reliably with only a few P ‐wave arrivals, even when contaminated by an outlier. Therefore, it is believed that this location method could significantly improve the robustness of an earthquake early warning system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糖炒李子发布了新的文献求助10
1秒前
史小菜完成签到,获得积分10
1秒前
SYLH应助serena1127采纳,获得10
2秒前
在望应助serena1127采纳,获得10
2秒前
阿哈完成签到,获得积分10
3秒前
3秒前
枯木逢春完成签到,获得积分20
3秒前
cebr发布了新的文献求助10
3秒前
yyawkx发布了新的文献求助10
4秒前
4秒前
5秒前
bkagyin应助枯木逢春采纳,获得10
7秒前
阿飞飞飞完成签到,获得积分20
7秒前
1234发布了新的文献求助10
8秒前
阿哈发布了新的文献求助10
8秒前
悦己发布了新的文献求助10
9秒前
10秒前
熊霸天完成签到,获得积分20
10秒前
九姑娘完成签到 ,获得积分10
14秒前
15秒前
Hungrylunch应助silver采纳,获得20
16秒前
1234完成签到,获得积分10
16秒前
17秒前
852应助cebr采纳,获得10
18秒前
wyr完成签到,获得积分0
19秒前
haixin完成签到,获得积分20
19秒前
20秒前
伍六柒完成签到,获得积分10
20秒前
小蘑菇应助明亮的咖啡豆采纳,获得10
22秒前
Wind发布了新的文献求助10
23秒前
cebr完成签到,获得积分10
24秒前
翟函完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
朱之欣完成签到,获得积分10
25秒前
26秒前
依居完成签到,获得积分10
28秒前
FashionBoy应助喝杯水再走采纳,获得10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489256
求助须知:如何正确求助?哪些是违规求助? 3076588
关于积分的说明 9145743
捐赠科研通 2768815
什么是DOI,文献DOI怎么找? 1519452
邀请新用户注册赠送积分活动 703814
科研通“疑难数据库(出版商)”最低求助积分说明 702024