A Robust Maximum‐Likelihood Earthquake Location Method for Early Warning

最大似然 预警系统 地震学 地震位置 地质学 计算机科学 统计 数学 电信 诱发地震
作者
Dong‐Hoon Sheen
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:105 (3): 1301-1313 被引量:5
标识
DOI:10.1785/0120140188
摘要

This study proposes a robust method that estimates a reliable earthquake location from only a small number of P ‐wave arrival times. The method is based on the maximum‐likelihood estimation from differential P ‐wave arrivals. We formulate the problem using a probability density function (PDF) of the residual between observed and predicted differential P ‐wave travel times between two seismic stations and construct the likelihood function from the sum of the products of the independent PDFs. The hypocenter is determined by an iterative grid‐search algorithm that finds the point with the largest probability on successively finer grids. To reduce the effect from outliers possibly concealed within a small number of observations, the Student’s t ‐distribution is used for the PDF of the location likelihood. The jackknife resampling technique is also used to discriminate outliers from the observations. The robustness of the method is tested using the Monte Carlo experiments that locate 10,000 events from small numbers of P ‐wave arrivals observed within an epicentral distance of 100 km, including both arrival‐time error and velocity‐model error. The earthquakes are located within an epicentral distance of 8.5±10.8  km and 20.6±33.1  km for events inside the seismic network and outside the network, respectively, using only five P ‐wave arrivals, including a large arrival‐time error between ±1 and 5 s. This shows that this method can estimate the location of the event reliably with only a few P ‐wave arrivals, even when contaminated by an outlier. Therefore, it is believed that this location method could significantly improve the robustness of an earthquake early warning system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flac完成签到,获得积分10
1秒前
1秒前
Yuanyuan发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
JW发布了新的文献求助30
2秒前
SciGPT应助无情夏槐采纳,获得10
2秒前
薛晓博完成签到,获得积分10
4秒前
bravo发布了新的文献求助10
5秒前
April发布了新的文献求助10
5秒前
5秒前
5秒前
8秒前
wangye完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
seashell发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
13秒前
常半邪发布了新的文献求助10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助30
16秒前
九月发布了新的文献求助10
16秒前
可爱依凝应助洛城l采纳,获得10
17秒前
田様应助鱼仔采纳,获得10
17秒前
粗犷的灵松完成签到,获得积分10
18秒前
19秒前
19秒前
PHDpeng发布了新的文献求助10
20秒前
21秒前
semigreen完成签到 ,获得积分10
21秒前
痴情的阁发布了新的文献求助10
26秒前
bravo完成签到,获得积分0
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729178
求助须知:如何正确求助?哪些是违规求助? 5316755
关于积分的说明 15316050
捐赠科研通 4876196
什么是DOI,文献DOI怎么找? 2619280
邀请新用户注册赠送积分活动 1568848
关于科研通互助平台的介绍 1525338