亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Maximum‐Likelihood Earthquake Location Method for Early Warning

最大似然 预警系统 地震学 地震位置 地质学 计算机科学 统计 数学 电信 诱发地震
作者
Dong‐Hoon Sheen
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:105 (3): 1301-1313 被引量:5
标识
DOI:10.1785/0120140188
摘要

This study proposes a robust method that estimates a reliable earthquake location from only a small number of P ‐wave arrival times. The method is based on the maximum‐likelihood estimation from differential P ‐wave arrivals. We formulate the problem using a probability density function (PDF) of the residual between observed and predicted differential P ‐wave travel times between two seismic stations and construct the likelihood function from the sum of the products of the independent PDFs. The hypocenter is determined by an iterative grid‐search algorithm that finds the point with the largest probability on successively finer grids. To reduce the effect from outliers possibly concealed within a small number of observations, the Student’s t ‐distribution is used for the PDF of the location likelihood. The jackknife resampling technique is also used to discriminate outliers from the observations. The robustness of the method is tested using the Monte Carlo experiments that locate 10,000 events from small numbers of P ‐wave arrivals observed within an epicentral distance of 100 km, including both arrival‐time error and velocity‐model error. The earthquakes are located within an epicentral distance of 8.5±10.8  km and 20.6±33.1  km for events inside the seismic network and outside the network, respectively, using only five P ‐wave arrivals, including a large arrival‐time error between ±1 and 5 s. This shows that this method can estimate the location of the event reliably with only a few P ‐wave arrivals, even when contaminated by an outlier. Therefore, it is believed that this location method could significantly improve the robustness of an earthquake early warning system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
开朗如猪猪完成签到 ,获得积分10
2秒前
5秒前
Jonathan完成签到,获得积分10
5秒前
shinn发布了新的文献求助10
5秒前
6秒前
LL完成签到,获得积分10
6秒前
taysun完成签到 ,获得积分10
8秒前
哈哈带发布了新的文献求助10
8秒前
LL发布了新的文献求助10
9秒前
骨科小李完成签到,获得积分10
9秒前
英俊汝燕完成签到,获得积分10
10秒前
10秒前
13秒前
15秒前
yyy发布了新的文献求助10
18秒前
斯文败类应助shinn采纳,获得10
21秒前
22秒前
27秒前
周亚平发布了新的文献求助10
28秒前
cdu完成签到,获得积分10
30秒前
定西完成签到,获得积分10
30秒前
陈思发布了新的文献求助10
32秒前
爆米花应助flyabc采纳,获得10
33秒前
34秒前
34秒前
李健的粉丝团团长应助HE采纳,获得10
35秒前
完美世界应助发的不太好采纳,获得10
36秒前
Orange应助周亚平采纳,获得10
36秒前
37秒前
shinn发布了新的文献求助10
38秒前
ohwhale完成签到 ,获得积分10
38秒前
40秒前
Jasper应助科研通管家采纳,获得10
41秒前
41秒前
Rita应助科研通管家采纳,获得10
41秒前
慕青应助科研通管家采纳,获得10
41秒前
完美世界应助科研通管家采纳,获得10
41秒前
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772246
求助须知:如何正确求助?哪些是违规求助? 5596912
关于积分的说明 15429307
捐赠科研通 4905268
什么是DOI,文献DOI怎么找? 2639301
邀请新用户注册赠送积分活动 1587230
关于科研通互助平台的介绍 1542080