A Robust Maximum‐Likelihood Earthquake Location Method for Early Warning

最大似然 预警系统 地震学 地震位置 地质学 计算机科学 统计 数学 电信 诱发地震
作者
Dong‐Hoon Sheen
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:105 (3): 1301-1313 被引量:5
标识
DOI:10.1785/0120140188
摘要

This study proposes a robust method that estimates a reliable earthquake location from only a small number of P ‐wave arrival times. The method is based on the maximum‐likelihood estimation from differential P ‐wave arrivals. We formulate the problem using a probability density function (PDF) of the residual between observed and predicted differential P ‐wave travel times between two seismic stations and construct the likelihood function from the sum of the products of the independent PDFs. The hypocenter is determined by an iterative grid‐search algorithm that finds the point with the largest probability on successively finer grids. To reduce the effect from outliers possibly concealed within a small number of observations, the Student’s t ‐distribution is used for the PDF of the location likelihood. The jackknife resampling technique is also used to discriminate outliers from the observations. The robustness of the method is tested using the Monte Carlo experiments that locate 10,000 events from small numbers of P ‐wave arrivals observed within an epicentral distance of 100 km, including both arrival‐time error and velocity‐model error. The earthquakes are located within an epicentral distance of 8.5±10.8  km and 20.6±33.1  km for events inside the seismic network and outside the network, respectively, using only five P ‐wave arrivals, including a large arrival‐time error between ±1 and 5 s. This shows that this method can estimate the location of the event reliably with only a few P ‐wave arrivals, even when contaminated by an outlier. Therefore, it is believed that this location method could significantly improve the robustness of an earthquake early warning system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅致远发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
5秒前
爆米花应助清颜采纳,获得10
5秒前
5秒前
乐观黎云完成签到,获得积分10
6秒前
杏里关注了科研通微信公众号
6秒前
星辰大海应助Huang采纳,获得10
6秒前
默默善愁发布了新的文献求助50
7秒前
7秒前
Alpha应助怡然的寻桃采纳,获得10
7秒前
大力帽子应助Haj1mi采纳,获得10
7秒前
深情安青应助ycy采纳,获得10
7秒前
领导范儿应助儒雅致远采纳,获得10
7秒前
泡泡儿发布了新的文献求助10
8秒前
阳光的桐完成签到,获得积分10
9秒前
10秒前
岳维芸发布了新的文献求助10
10秒前
好久不见应助听话的寒烟采纳,获得30
10秒前
xixi发布了新的文献求助30
11秒前
shushu完成签到 ,获得积分10
11秒前
完美世界应助yuaner采纳,获得10
11秒前
libe发布了新的文献求助10
12秒前
朴素的怜雪完成签到,获得积分10
12秒前
害怕的靖巧完成签到,获得积分10
13秒前
13秒前
wanci应助独特的采纳,获得10
14秒前
tiptip应助Wu采纳,获得10
14秒前
PAPA完成签到,获得积分10
15秒前
Orange应助renwoxing采纳,获得10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
友好锦程完成签到,获得积分20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137