抗原
抗体
单克隆抗体
生物
免疫学
分子生物学
化学
作者
Tomoyuki Igawa,Kenta Haraya,Kunihiro Hattori
摘要
Monoclonal antibodies have become a general modality in therapeutic development, and a variety of monoclonal antibodies targeting soluble antigens have been developed. However, even with infinite binding affinity to an antigen, a conventional antibody can bind to the antigen only once and results in an increase in total plasma antigen concentration in vivo. This antibody-mediated antigen accumulation generally occurs because the clearance from circulation of an antibody-antigen complex is much slower than that of a free antigen. This limitation has recently been overcome by sweeping antibodies, which are capable of actively eliminating soluble antigens from circulation. A sweeping antibody incorporates two antibody engineering technologies: one is variable region engineering to enable the antibody to bind to an antigen in plasma and dissociate from the antigen in endosome (after which the antigen undergoes lysosomal degradation), and the other is constant region engineering to increase the cellular uptake of the antibody-antigen complex into endosome. By enhancing the elimination of soluble antigens from circulation, sweeping antibodies can therapeutically target soluble antigens that conventional antibodies cannot. This review discusses the features, engineering technologies, advantages, and applications of sweeping antibodies that target soluble antigens.
科研通智能强力驱动
Strongly Powered by AbleSci AI