X射线光电子能谱
费米能级
带隙
准费米能级
材料科学
量子点
紫外光电子能谱
波段图
半金属
凝聚态物理
薄膜
分析化学(期刊)
物理
光电子学
化学
纳米技术
核磁共振
电子
量子力学
色谱法
作者
Elisa M. Miller,Daniel M. Kroupa,Jianbing Zhang,Philip Schulz,Ashley R. Marshall,Antoine Kahn,Stephan Lany,Joseph M. Luther,Matthew C. Beard,Craig L. Perkins,Jao van de Lagemaat
出处
期刊:ACS Nano
[American Chemical Society]
日期:2016-02-19
卷期号:10 (3): 3302-3311
被引量:138
标识
DOI:10.1021/acsnano.5b06833
摘要
We use a high signal-to-noise X-ray photoelectron spectrum of bulk PbS, GW calculations, and a model assuming parabolic bands to unravel the various X-ray and ultraviolet photoelectron spectral features of bulk PbS as well as determine how to best analyze the valence band region of PbS quantum dot (QD) films. X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) are commonly used to probe the difference between the Fermi level and valence band maximum (VBM) for crystalline and thin-film semiconductors. However, we find that when the standard XPS/UPS analysis is used for PbS, the results are often unrealistic due to the low density of states at the VBM. Instead, a parabolic band model is used to determine the VBM for the PbS QD films, which is based on the bulk PbS experimental spectrum and bulk GW calculations. Our analysis highlights the breakdown of the Brillioun zone representation of the band diagram for large band gap, highly quantum confined PbS QDs. We have also determined that in 1,2-ethanedithiol-treated PbS QD films the Fermi level position is dependent on the QD size; specifically, the smallest band gap QD films have the Fermi level near the conduction band minimum and the Fermi level moves away from the conduction band for larger band gap PbS QD films. This change in the Fermi level within the QD band gap could be due to changes in the Pb:S ratio. In addition, we use inverse photoelectron spectroscopy to measure the conduction band region, which has similar challenges in the analysis of PbS QD films due to a low density of states near the conduction band minimum.
科研通智能强力驱动
Strongly Powered by AbleSci AI