PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models

计算机科学 马尔可夫链 Python(编程语言) 数据挖掘 主成分分析 估计员 马尔可夫模型 软件 理论计算机科学 算法 人工智能 机器学习 数学 程序设计语言 统计
作者
Martin K. Scherer,Benjamin Trendelkamp-Schroer,Fabian Paul,Guillermo Pérez-Hernández,Moritz Hoffmann,Nuria Plattner,Christoph Wehmeyer,Jan-Hendrik Prinz,Frank Noé
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:11 (11): 5525-5542 被引量:1019
标识
DOI:10.1021/acs.jctc.5b00743
摘要

Markov (state) models (MSMs) and related models of molecular kinetics have recently received a surge of interest as they can systematically reconcile simulation data from either a few long or many short simulations and allow us to analyze the essential metastable structures, thermodynamics, and kinetics of the molecular system under investigation. However, the estimation, validation, and analysis of such models is far from trivial and involves sophisticated and often numerically sensitive methods. In this work we present the open-source Python package PyEMMA (http://pyemma.org) that provides accurate and efficient algorithms for kinetic model construction. PyEMMA can read all common molecular dynamics data formats, helps in the selection of input features, provides easy access to dimension reduction algorithms such as principal component analysis (PCA) and time-lagged independent component analysis (TICA) and clustering algorithms such as k-means, and contains estimators for MSMs, hidden Markov models, and several other models. Systematic model validation and error calculation methods are provided. PyEMMA offers a wealth of analysis functions such that the user can conveniently compute molecular observables of interest. We have derived a systematic and accurate way to coarse-grain MSMs to few states and to illustrate the structures of the metastable states of the system. Plotting functions to produce a manuscript-ready presentation of the results are available. In this work, we demonstrate the features of the software and show new methodological concepts and results produced by PyEMMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taoyiyan完成签到,获得积分10
刚刚
甜甜玫瑰应助小刘小刘采纳,获得10
刚刚
乐乐应助天边的云采纳,获得10
1秒前
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
赘婿应助明亮的妙芙采纳,获得10
1秒前
linty发布了新的文献求助10
2秒前
lin229完成签到,获得积分10
2秒前
2秒前
2秒前
哈哈哈完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
vvv发布了新的文献求助30
5秒前
YBR发布了新的文献求助10
5秒前
aaa关注了科研通微信公众号
5秒前
kkkkk发布了新的文献求助40
6秒前
科研通AI2S应助Whitney采纳,获得10
6秒前
贪玩映雁发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
RongZhaowei发布了新的文献求助10
8秒前
寻觅发布了新的文献求助10
9秒前
花花完成签到,获得积分10
9秒前
gg完成签到,获得积分10
9秒前
slz发布了新的文献求助10
9秒前
郭丰完成签到,获得积分10
9秒前
ding应助刘大宝采纳,获得10
10秒前
10秒前
科研通AI2S应助张羊羔采纳,获得10
11秒前
sssss发布了新的文献求助10
11秒前
12秒前
风趣安青完成签到 ,获得积分10
12秒前
12秒前
vvv完成签到,获得积分20
12秒前
Yziii应助排骨炖豆角采纳,获得20
13秒前
研友_nxer7Z发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655