Improved particle swarm optimization algorithm and its application in text feature selection

粒子群优化 特征选择 蚁群优化算法 计算机科学 特征(语言学) 选择(遗传算法) 人工智能 算法 遗传算法 惯性 数学优化 模式识别(心理学) 机器学习 数学 经典力学 物理 哲学 语言学
作者
Yonghe Lu,Minghui Liang,Zeyuan Ye,Lichao Cao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:35: 629-636 被引量:127
标识
DOI:10.1016/j.asoc.2015.07.005
摘要

Text feature selection is an importance step in text classification and directly affects the classification performance. Classic feature selection methods mainly include document frequency (DF), information gain (IG), mutual information (MI), chi-square test (CHI). Theoretically, these methods are difficult to get improvement due to the deficiency of their mathematical models. In order to further improve effect of feature selection, many researches try to add intelligent optimization algorithms into feature selection method, such as improved ant colony algorithm and genetic algorithms, etc. Compared to the ant colony algorithm and genetic algorithms, particle swarm optimization algorithm (PSO) is simpler to implement and can find the optimal point quickly. Thus, this paper attempt to improve the effect of text feature selection through PSO. By analyzing current achievements of improved PSO and characteristic of classic feature selection methods, we have done many explorations in this paper. Above all, we selected the common PSO model, the two improved PSO models based respectively on functional inertia weight and constant constriction factor to optimize feature selection methods. Afterwards, according to constant constriction factor, we constructed a new functional constriction factor and added it into traditional PSO model. Finally, we proposed two improved PSO models based on both functional constriction factor and functional inertia weight, they are respectively the synchronously improved PSO model and the asynchronously improved PSO model. In our experiments, CHI was selected as the basic feature selection method. We improved CHI through using the six PSO models mentioned above. The experiment results and significance tests show that the asynchronously improved PSO model is the best one among all models both in the effect of text classification and in the stability of different dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
千跃应助科研通管家采纳,获得10
1秒前
jing应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
张雷应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
千跃应助科研通管家采纳,获得20
1秒前
无花果应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Rita应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
思源应助七七采纳,获得10
3秒前
3秒前
李玲玲发布了新的文献求助10
3秒前
4秒前
5秒前
zz发布了新的文献求助10
5秒前
DHMO完成签到,获得积分10
5秒前
5秒前
Akim应助Jotaro采纳,获得10
6秒前
6秒前
司空豁发布了新的文献求助10
6秒前
FANTASY驳回了nan应助
7秒前
7秒前
罗小球发布了新的文献求助10
7秒前
快乐发带发布了新的文献求助10
8秒前
搞怪莫茗应助达克赛德采纳,获得10
8秒前
Ling发布了新的文献求助10
9秒前
NexusExplorer应助大方博涛采纳,获得10
10秒前
刘球球发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105