材料科学
碳纤维
锰
兴奋剂
纳米颗粒
无机化学
嵌入
锂(药物)
化学工程
纳米技术
光电子学
冶金
复合数
化学
内分泌学
工程类
人工智能
复合材料
医学
计算机科学
作者
Yanting Chu,Lingyu Guo,Baojuan Xi,Zhenyu Feng,Fangfang Wu,Yue Lin,Jincheng Liu,Di Sun,Jinkui Feng,Yitai Qian,Shenglin Xiong
标识
DOI:10.1002/adma.201704244
摘要
The first synthesis of MnO@Mn3 O4 nanoparticles embedded in an N-doped porous carbon framework (MnO@Mn3 O4 /NPCF) through pyrolysis of mixed-valent Mn8 clusters is reported. The unique features of MnO@Mn3 O4 /NPCF are derived from the distinct interfacial structure of the Mn8 clusters, implying a new methodological strategy for hybrids. The characteristics of MnO@Mn3 O4 are determined by conducting high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) valence-state analyses. Due to the combined advantages of MnO@Mn3 O4 , the uniform distribution, and the NPCF, MnO@Mn3 O4 /NPCF displays unprecedented lithium-storage performance (1500 mA h g-1 at 0.2 A g-1 over 270 cycles). Quantitative analysis reveals that capacitance and diffusion mechanisms account for Li+ storage, wherein the former dominates. First-principles calculations highlight the strong affiliation of MnO@Mn3 O4 and the NPCF, which favor structural stability. Meanwhile, defects of the NPCF decrease the diffusion energy barrier, thus enhancing the Li+ pseudocapacitive process, reversible capacity, and long cycling performance. This work presents a new methodology to construct composites for energy storage and conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI