已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MEMS gyros temperature calibration through artificial neural networks

校准 微电子机械系统 惯性测量装置 材料科学 陀螺仪 加速度计
作者
Rita Fontanella,Domenico Accardo,Rosario Schiano Lo Moriello,Leopoldo Angrisani,Domenico De Simone
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:279: 553-565 被引量:27
标识
DOI:10.1016/j.sna.2018.04.008
摘要

Abstract In this paper, the application of Artificial Neural Networks to perform the thermal calibration of bias for Micro Electro-Mechanical gyros that are installed in Inertial Measurement Units is discussed. In recent years, the interest in using these systems to perform integrated inertial navigation has increased. Several new applications, related to the use of autonomous systems and personal navigation systems in GPS-challenging environments, have been developed. Thermal calibration of bias is a key issue to be assessed to achieve the best performance of a Micro Electro-Mechanical gyro. It can reduce sensor bias to one order of magnitude lower than non-calibrated conditions. Usually, thermal calibration is performed by exploiting polynomial fitting, i.e. finding the least-square polynomial that fits experimental data collected during laboratory tests in a climatic chamber. Polynomials have some drawbacks when they are applied to Micro Electro-Mechanical gyro calibration. They are not adequate to model abrupt change of bias trend in small temperature intervals and sensor hysteresis. For this reason, in the present paper, the use of Back Propagation Artificial Neural Networks is suggested as an improvement of polynomial fitting. Indeed, Neural Networks have intrinsic adaptive configurations and standard training and testing techniques, so that they can be adequately adopted for mapping thermal bias variations. In this paper, the polynomial fitting and Neural Network compensation algorithms are compared on selected testing points where the two techniques have the largest difference. Results highlight that the proposed method has better performance on these points. Therefore, the time in which the flight attitude accuracy meets the requirements imposed by the current regulations is improved by 20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LM879发布了新的文献求助10
刚刚
CLAIR完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
3秒前
雾非雾完成签到,获得积分10
4秒前
完美世界应助正直的沛凝采纳,获得10
5秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得30
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
raycee应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
raycee应助科研通管家采纳,获得10
10秒前
10秒前
锦七完成签到,获得积分10
11秒前
12秒前
超帅涵柳完成签到 ,获得积分20
12秒前
zhzzhz发布了新的文献求助10
13秒前
研友_VZG7GZ应助1234采纳,获得10
14秒前
16秒前
16秒前
17秒前
安安应助xu采纳,获得80
19秒前
20秒前
pcr163应助仔拉采纳,获得80
21秒前
溪泉发布了新的文献求助10
22秒前
煦123应助lily采纳,获得10
22秒前
柏特瑞发布了新的文献求助10
24秒前
26秒前
28秒前
29秒前
科研通AI5应助溪泉采纳,获得30
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497125
求助须知:如何正确求助?哪些是违规求助? 3081708
关于积分的说明 9169059
捐赠科研通 2774847
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703222