诱导多能干细胞
细胞生物学
干细胞
细胞外小泡
细胞
细胞凋亡
生物
胚胎干细胞
心肌细胞
化学
药理学
细胞外
生物化学
基因
作者
Bohao Liu,Benjamin W. Lee,Koki Nakanishi,Aránzazu Villasante,Rebecca Williamson,Jordan B. Metz,Jin-Ho Kim,Mariko Kanai,Lynn Bi,Kristy Brown,Gilbert Di Paolo,Shunichi Homma,Peter A. Sims,V.K. Topkara,Gordana Vunjak‐Novakovic
标识
DOI:10.1038/s41551-018-0229-7
摘要
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. For example, EVs secreted by stem cells injected into infarcted hearts can induce recovery through the delivery of stem-cell-specific miRNAs. However, the retention of the EVs and the therapeutic effects are short-lived. Here, we show that an engineered hydrogel patch capable of slowly releasing EVs secreted from cardiomyocytes derived from induced pluripotent stem (iPS) cells reduced arrhythmic burden, promoted ejection-fraction recovery, decreased cardiomyocyte apoptosis 24 hours after infarction, and reduced infarct size and cell hypertrophy 4 weeks post-infarction when implanted onto infarcted rat hearts. We also show that the EVs are enriched with cardiac-specific miRNAs known to modulate cardiomyocyte-specific processes. The extended delivery of EVs secreted from iPS-cell-derived cardiomyocytes into the heart may help understand heart recovery and treat heart injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI