材料科学
残余应力
复合材料
硅
碳纤维
涂层
相对湿度
等离子体增强化学气相沉积
基质(水族馆)
湿度
热膨胀
图层(电子)
压力(语言学)
聚合物
冶金
复合数
海洋学
物理
地质学
哲学
热力学
语言学
作者
Michiel Top,Guus Mulder,Nicole Prager,John Fahlteich,J. Th. M. De Hosson
标识
DOI:10.1016/j.surfcoat.2018.04.066
摘要
Residual stress measurements of thin films are common practice in device technology and are extremely important in particular for the characterization of thin film coatings. A largely ignored stress contribution is the difference in coefficient of hygroscopic expansion between the coating and substrate. This paper presents a rather novel approach to accurately evaluate the residual stress and coefficient of hygroscopic expansion of strongly curved specimens. Silicon-containing plasma polymer coatings with different carbon contents were deposited using hollow cathode arc discharge based PECVD. Samples of different layer composition were produced comprising silicon-containing plasma-polymer layers with a high carbon concentration and more "inorganic" SiO2 like layers with lower carbon concentration. All coatings show a compressive stress state. The highest stress was measured in the coating with the highest carbon content (239 ± 6 MPa) and decreases to 94 ± 31 MPa at lower carbon contents. Variation of the humidity showed that all coatings expand under influence of increasing relative humidity. The most inorganic coatings exhibits the highest expansion coefficient of 29.2 ± 2·10−6 (% r.h.)−1. The results obtained were compared with the results from contact angle measurements. An increase in the hygroscopic expansion corresponds with an increasing hydrophilicity of the coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI