All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers

超级电容器 电容 材料科学 功率密度 平面的 纳米技术 微尺度化学 石墨烯 电极 光电子学 氮化钒 功率(物理) 氮化物 计算机科学 化学 图层(电子) 物理 计算机图形学(图像) 量子力学 数学教育 物理化学 数学
作者
Sen Wang,Zhong‐Shuai Wu,Feng Zhou,Xiaoyu Shi,Shuilin Zheng,Jieqiong Qin,Han Xiao,Chao Sun,Xinhe Bao
出处
期刊:npj 2D materials and applications [Nature Portfolio]
卷期号:2 (1) 被引量:71
标识
DOI:10.1038/s41699-018-0052-8
摘要

Abstract Planar micro-supercapacitors are recognized as one of the most competitive on-chip power sources for integrated electronics. However, most reported symmetric micro-supercapacitors suffer from low energy density. Herein, we demonstrate the facile mask-assisted fabrication of new-type all-solid-state planar hybrid micro-supercapacitors with high energy density, based on interdigital patterned films of porous vanadium nitride nanosheets as negative electrode and Co(OH) 2 nanoflowers as positive electrode. The resultant planar hybrid micro-supercapacitors display high areal capacitance of 21 mF cm −2 and volumetric capacitance of 39.7 F cm −3 at 0.2 mA cm −2 , and exhibit remarkable energy density of 12.4 mWh cm −3 and power density of 1750 mW cm −3 , based on the whole device, outperforming most reported planar hybrid micro-supercapacitors and planar asymmetric micro-supercapacitors. Moreover, all-solid-state planar hybrid micro-supercapacitors show excellent cyclability with 84% capacitance retention after 10000 cycles, and exceptionally mechanical flexibility. Therefore, our proposed strategy for the simplified construction of planar hybrid micro-supercapacitors will offer numerous opportunities of utilizing graphene and other 2D nanosheets for high-energy microscale supercapacitors for electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助小鱼采纳,获得10
1秒前
charint完成签到,获得积分10
1秒前
水果发布了新的文献求助10
3秒前
哇塞的完成签到,获得积分10
4秒前
所所应助张菁钊采纳,获得10
6秒前
7秒前
8秒前
10秒前
蔓越莓完成签到 ,获得积分10
11秒前
梵天完成签到,获得积分10
11秒前
郭志成完成签到 ,获得积分10
11秒前
糖炒李子完成签到 ,获得积分10
12秒前
小鱼发布了新的文献求助10
13秒前
Jimmy Ko发布了新的文献求助10
15秒前
烟花应助桔梗采纳,获得10
16秒前
18秒前
19秒前
简单项链发布了新的文献求助10
20秒前
典雅傲芙完成签到,获得积分10
21秒前
张菁钊发布了新的文献求助10
24秒前
zhonglv7应助LEI采纳,获得10
26秒前
乐正绫完成签到 ,获得积分10
26秒前
FashionBoy应助bingrui采纳,获得10
26秒前
27秒前
PPP完成签到,获得积分10
28秒前
思源应助YOLO采纳,获得30
28秒前
研友_8yN60L完成签到,获得积分10
32秒前
小蜗牛发布了新的文献求助10
33秒前
33秒前
34秒前
西海岸的风完成签到 ,获得积分10
34秒前
36秒前
xxx发布了新的文献求助10
38秒前
39秒前
clyhg完成签到,获得积分10
40秒前
所所应助周晓睿采纳,获得10
42秒前
弘卿完成签到,获得积分10
42秒前
道明嗣完成签到 ,获得积分10
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298879
求助须知:如何正确求助?哪些是违规求助? 4447312
关于积分的说明 13842156
捐赠科研通 4332840
什么是DOI,文献DOI怎么找? 2378366
邀请新用户注册赠送积分活动 1373656
关于科研通互助平台的介绍 1339240