超级电容器
电容
材料科学
功率密度
平面的
纳米技术
微尺度化学
石墨烯
电极
光电子学
氮化钒
功率(物理)
氮化物
计算机科学
化学
图层(电子)
物理
计算机图形学(图像)
量子力学
数学教育
物理化学
数学
作者
Sen Wang,Zhong‐Shuai Wu,Feng Zhou,Xiaoyu Shi,Shuilin Zheng,Jieqiong Qin,Han Xiao,Chao Sun,Xinhe Bao
标识
DOI:10.1038/s41699-018-0052-8
摘要
Abstract Planar micro-supercapacitors are recognized as one of the most competitive on-chip power sources for integrated electronics. However, most reported symmetric micro-supercapacitors suffer from low energy density. Herein, we demonstrate the facile mask-assisted fabrication of new-type all-solid-state planar hybrid micro-supercapacitors with high energy density, based on interdigital patterned films of porous vanadium nitride nanosheets as negative electrode and Co(OH) 2 nanoflowers as positive electrode. The resultant planar hybrid micro-supercapacitors display high areal capacitance of 21 mF cm −2 and volumetric capacitance of 39.7 F cm −3 at 0.2 mA cm −2 , and exhibit remarkable energy density of 12.4 mWh cm −3 and power density of 1750 mW cm −3 , based on the whole device, outperforming most reported planar hybrid micro-supercapacitors and planar asymmetric micro-supercapacitors. Moreover, all-solid-state planar hybrid micro-supercapacitors show excellent cyclability with 84% capacitance retention after 10000 cycles, and exceptionally mechanical flexibility. Therefore, our proposed strategy for the simplified construction of planar hybrid micro-supercapacitors will offer numerous opportunities of utilizing graphene and other 2D nanosheets for high-energy microscale supercapacitors for electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI