Trade‐offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity

登录中 固碳 环境科学 气候变化 农林复合经营 碳纤维 粗木屑 雨林 林业 生态学 栖息地 地理 二氧化碳 生物 数学 复合数 算法
作者
Anand Roopsind,T. Trevor Caughlin,Peter van der Hout,E.J.M.M. Arets,Francis E. Putz
出处
期刊:Global Change Biology [Wiley]
卷期号:24 (7): 2862-2874 被引量:43
标识
DOI:10.1111/gcb.14155
摘要

Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land-use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced-impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out-of-sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbs发布了新的文献求助10
刚刚
2秒前
英姑应助Annie采纳,获得10
2秒前
jiangjiang完成签到,获得积分10
3秒前
慕青应助mmmk采纳,获得30
5秒前
xuxingxing完成签到,获得积分10
5秒前
5秒前
5秒前
chenzi完成签到,获得积分20
6秒前
呱呱蛙完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Ztx发布了新的文献求助10
7秒前
冰茉莉发布了新的文献求助50
8秒前
wanci应助Marciu33采纳,获得10
8秒前
坚强乌龟完成签到,获得积分20
8秒前
元谷雪发布了新的文献求助10
9秒前
大力飞扬发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
深情安青应助和谐谷蕊采纳,获得10
14秒前
专注的问寒应助法外狂徒采纳,获得100
14秒前
15秒前
呱呱蛙发布了新的文献求助10
16秒前
16秒前
啊呜发布了新的文献求助10
17秒前
努力发文不会累完成签到,获得积分10
17秒前
明亮的颖完成签到,获得积分10
17秒前
17秒前
lyy驳回了CodeCraft应助
18秒前
jsw发布了新的文献求助10
18秒前
18秒前
专注的问寒应助坚强乌龟采纳,获得20
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420