吸附
朗缪尔吸附模型
水溶液
化学
核化学
傅里叶变换红外光谱
离子强度
朗缪尔
扫描电子显微镜
色谱法
分析化学(期刊)
材料科学
化学工程
有机化学
复合材料
工程类
作者
Khadijeh Jafari,Mohsen Heidari,Omid Rahmanian
标识
DOI:10.1016/j.ultsonch.2018.03.018
摘要
In this study, the effect of magnetic adsorbent prepared from Olive kernel (MA-OK) was studied in the Amoxicillin (AMX) removal. The synthesized adsorbent, under a sonochemical method, were characterized using Field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD). The absorption functions in the batch experiments were studied using the expected parameters for the maximum absorption capacities (qm) such as pH, contact time, the dosage adsorbent, and the initial concentration of AMX. The residual amount of AMX were recorded after injection into the HPLC. The proportion of the mobile phase was methanol to water (40:60) at a flow rate of 1 ml/min. Adsorption experimental results indicated that the removal efficiency reaches its maximum using 0.5 g/L of the adsorbent, concentration of AMX (200 mg/L) at contact time of 90 min and pH of 6. The kinetics of the reaction and the adsorption isotherm could be well described by the pseudo-second order equation and the Langmuir adsorption isotherm with a regression coefficient of 0.9981 and 0.9979, respectively. The maximum adsorption capacity obtained from the Langmuir model was to be 238.1 mg/g. The ionic strength of the solution has no significant effect on increasing the AMX removal efficiency. Eventually, application of this adsorbent was successfully performed for removing AMX from aqueous and hospital wastewater solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI