已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes

植被(病理学) 植树造林 环境科学 干旱 荒漠化 自然地理学 增强植被指数 弹道 植被分类 土壤科学 水文学(农业) 地理 农林复合经营 生态学 归一化差异植被指数 气候变化 植被指数 地质学 病理 物理 岩土工程 生物 医学 天文
作者
Bingwen Qiu,Gong Chen,Zhenghong Tang,Difei Lu,Zhuangzhuang Wang,Chongchen Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:133: 75-88 被引量:92
标识
DOI:10.1016/j.isprsjprs.2017.10.003
摘要

The Three-North Shelter Forest Program (TNSFP) in China has been intensely invested for approximately 40 years. However, the efficacy of the TNSFP has been debatable due to the spatiotemporal complexity of vegetation changes. A novel framework was proposed for characterizing vegetation changes in the TNSFP region through Combining Trend and Temporal Similarity trajectory (COTTS). This framework could automatically and continuously address the fundamental questions on where, what, how and when vegetation changes have occurred. Vegetation trend was measured by a non-parametric method. The temporal similarity trajectory was tracked by the Jeffries-Matusita (JM) distance of the inter-annual vegetation indices temporal profiles and modeled using the logistic function. The COTTS approach was applied to examine the afforestation efforts of the TNSFP using 500 m 8-day composites MODIS datasets from 2001 to 2015. Accuracy assessment from the 1109 reference sites reveals that the COTTS is capable of automatically determining vegetation dynamic patterns, with an overall accuracy of 90.08% and a kappa coefficient of 0.8688. The efficacy of the TNSFP was evaluated through comprehensive considerations of vegetation, soil and wetness. Around 45.78% areas obtained increasing vegetation trend, 2.96% areas achieved bare soil decline and 4.50% areas exhibited increasing surface wetness. There were 4.49% areas under vegetation degradation & desertification. Spatiotemporal heterogeneity of efficacy of the TNSFP was revealed: great vegetation gain through the abrupt dynamic pattern in the semi-humid and humid regions, bare soil decline & potential efficacy in the semi-arid region and remarkable efficacy in functional region of Eastern Ordos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助朱宸采纳,获得10
1秒前
HAHAHA完成签到 ,获得积分10
2秒前
fhznuli发布了新的文献求助10
2秒前
研友_Z1X6kn完成签到,获得积分10
5秒前
6秒前
tzjz_zrz完成签到,获得积分10
6秒前
MoonFlows完成签到 ,获得积分10
7秒前
雾蓝完成签到,获得积分10
9秒前
Yaon-Xu完成签到,获得积分10
19秒前
20秒前
22秒前
derrickZ发布了新的文献求助10
26秒前
26秒前
科研通AI2S应助芒果好高采纳,获得10
27秒前
彭于晏应助明毓采纳,获得10
28秒前
28秒前
随机子发布了新的文献求助210
29秒前
29秒前
log完成签到 ,获得积分10
31秒前
菠萝吹雪发布了新的文献求助20
32秒前
潤沁发布了新的文献求助10
34秒前
我是老大应助朱宸采纳,获得10
35秒前
uranus完成签到,获得积分10
36秒前
38秒前
bad boy完成签到,获得积分10
42秒前
Vera完成签到 ,获得积分10
43秒前
44秒前
bad boy发布了新的文献求助10
46秒前
leyellows完成签到 ,获得积分10
46秒前
46秒前
勤能补拙完成签到 ,获得积分10
48秒前
49秒前
zxh656691发布了新的文献求助10
49秒前
CipherSage应助djx123采纳,获得10
51秒前
微笑冰棍完成签到 ,获得积分10
51秒前
Orange应助coffee采纳,获得10
51秒前
鑫鑫完成签到 ,获得积分10
54秒前
寻道图强应助科研通管家采纳,获得30
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
57秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130010
求助须知:如何正确求助?哪些是违规求助? 2780834
关于积分的说明 7750228
捐赠科研通 2436057
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570