热导率
卤化物
声子
钙钛矿(结构)
热电效应
材料科学
微电子
热电材料
电导率
光电子学
纳米技术
热的
无机化学
凝聚态物理
化学
结晶学
物理化学
复合材料
物理
热力学
作者
Woochul Lee,Huashan Li,Andrew Barnabas Wong,Dandan Zhang,Minliang Lai,Yi Yu,Qiao Kong,Elbert Lin,Jeffrey J. Urban,Jeffrey C. Grossman,Peidong Yang
标识
DOI:10.1073/pnas.1711744114
摘要
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m-1·K-1), CsPbBr3 (0.42 ± 0.04 W·m-1·K-1), and CsSnI3 (0.38 ± 0.04 W·m-1·K-1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical-acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm-1), and high hole mobility (394 cm2·V-1·s-1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI