已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The mechanism of ROS regulation of antibiotic resistance and antimicrobial lethality.

抗生素耐药性 抗生素 抗菌剂 微生物学 杀伤力 生物 流出 多重耐药 抗药性 遗传学
作者
Li-na Ma,Hongfei Mi,Yunxin Xue,Dai Wang,Xilin Zhao
出处
期刊:PubMed 卷期号:38 (10): 902-909 被引量:9
标识
DOI:10.16288/j.yczz.16-157
摘要

Misuse and overuse of antibiotics have led to serious resistance problems that pose a grave threat to human health. How to solve the increasing antibiotic resistance problem is a huge challenge. Besides the traditional strategy of developing novel antimicrobial agents, exploring ways to enhance the lethal activity of antibiotics currently available is another feasible approach to fight against resistance. Recent studies showed that ROS plays an important role in regulating both antibiotic resistance and antimicrobial lethality. ROS produced by sublethal levels of antibiotic induces antibiotic resistance through activating drug efflux pumps via MarR(Multiple antibiotic resistance repressor)-MarA(Multiple antibiotic resistance activator), triggers the protective function against stress via SoxR (Superoxide response transcriptional regulator)-SoxS (Superoxide response transcription factor), and promotes mutagenesis by induction of SOS system. On the contrary, ROS triggered by lethal levels of antibiotic promotes bacterial killing and suppresses resistance. In addition to the concentration of antibiotic, the role of ROS in mediating antimicrobial resistance and bacterial killing is also regulated by a series of genetic regulators (e.g. MazEF, Cpx, SoxR, MarRAB). Thus, how ROS contribute to antimicrobial resistance and bacterial killing is complex. In this review, we summarized the mechanism of ROS in regulating antibiotic resistance and antimicrobial lethality, which may provide references and guidance for finding new ways to enhance antimicrobial lethality of currently available antimicrobials and battling antibiotic resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助Jasony采纳,获得10
1秒前
killCooker发布了新的文献求助10
1秒前
4秒前
巫马尔槐发布了新的文献求助10
4秒前
6秒前
pluto应助潇湘采纳,获得10
7秒前
7秒前
张杰完成签到,获得积分10
7秒前
7秒前
小白应助yinxq22采纳,获得10
8秒前
bella1201完成签到,获得积分10
8秒前
打个大西瓜完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
领导范儿应助风的忧伤采纳,获得10
10秒前
执着晓霜发布了新的文献求助10
11秒前
CipherSage应助chase采纳,获得10
12秒前
Alina_he完成签到,获得积分10
12秒前
平常心发布了新的文献求助10
13秒前
Alina_he发布了新的文献求助10
15秒前
15秒前
李健的小迷弟应助Antares采纳,获得10
16秒前
Harley完成签到 ,获得积分10
17秒前
科研通AI40应助科研小白采纳,获得10
18秒前
su完成签到,获得积分10
19秒前
吡咯爱成环应助巫马尔槐采纳,获得10
19秒前
嘤嘤嘤应助巫马尔槐采纳,获得10
19秒前
22秒前
23秒前
狗宅完成签到 ,获得积分10
23秒前
25秒前
星辰大海应助THEEVE采纳,获得10
26秒前
26秒前
26秒前
打打应助东郭寻凝采纳,获得10
27秒前
27秒前
28秒前
澜澜完成签到,获得积分20
29秒前
幽默不愁发布了新的文献求助10
30秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471228
求助须知:如何正确求助?哪些是违规求助? 3064103
关于积分的说明 9087449
捐赠科研通 2754912
什么是DOI,文献DOI怎么找? 1511625
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698404