Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images

医学 卷积神经网络 接收机工作特性 幽门螺杆菌感染 幽门螺杆菌 肠化生 胃炎 胃肠病学 人工智能 内科学 计算机科学
作者
Takumi Itoh,Hiroshi Kawahira,Hirotaka Nakashima,Noriko Yata
出处
期刊:Endoscopy International Open [Georg Thieme Verlag KG]
卷期号:06 (02): E139-E144 被引量:171
标识
DOI:10.1055/s-0043-120830
摘要

Abstract Background and study aims Helicobacter pylori (HP)-associated chronic gastritis can cause mucosal atrophy and intestinal metaplasia, both of which increase the risk of gastric cancer. The accurate diagnosis of HP infection during routine medical checks is important. We aimed to develop a convolutional neural network (CNN), which is a machine-learning algorithm similar to deep learning, capable of recognizing specific features of gastric endoscopy images. The goal behind developing such a system was to detect HP infection early, thus preventing gastric cancer. Patients and methods For the development of the CNN, we used 179 upper gastrointestinal endoscopy images obtained from 139 patients (65 were HP-positive: ≥ 10 U/mL and 74 were HP-negative: < 3 U/mL on HP IgG antibody assessment). Of the 179 images, 149 were used as training images, and the remaining 30 (15 from HP-negative patients and 15 from HP-positive patients) were set aside to be used as test images. The 149 training images were subjected to data augmentation, which yielded 596 images. We used the CNN to create a learning tool that would recognize HP infection and assessed the decision accuracy of the CNN with the 30 test images by calculating the sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC). Results The sensitivity and specificity of the CNN for the detection of HP infection were 86.7 % and 86.7 %, respectively, and the AUC was 0.956. Conclusions CNN-aided diagnosis of HP infection seems feasible and is expected to facilitate and improve diagnosis during health check-ups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助璃月稻妻采纳,获得10
刚刚
迟大猫应助激情的樱桃采纳,获得10
1秒前
1秒前
脑洞疼应助阳生采纳,获得10
1秒前
Ashley完成签到,获得积分10
1秒前
Ava应助侏罗纪世界采纳,获得10
2秒前
ding应助Daniel.Wu采纳,获得10
3秒前
传奇3应助易安采纳,获得10
4秒前
归燕发布了新的文献求助10
4秒前
怎么了发布了新的文献求助10
4秒前
CodeCraft应助糊涂的清醒者采纳,获得10
5秒前
5秒前
5秒前
1Yer6发布了新的文献求助30
5秒前
5秒前
6秒前
夜雨微凉发布了新的文献求助10
6秒前
科研通AI5应助小菜鸡采纳,获得100
7秒前
小鲁发布了新的文献求助10
8秒前
9秒前
高高香彤关注了科研通微信公众号
9秒前
王春琰发布了新的文献求助10
9秒前
卓儿发布了新的文献求助10
9秒前
兔纸爱萝卜啵完成签到,获得积分10
10秒前
10秒前
pzk发布了新的文献求助10
10秒前
Jasper应助yyygc采纳,获得10
10秒前
lv完成签到,获得积分10
11秒前
调研昵称发布了新的文献求助10
11秒前
11秒前
小二郎应助临妤采纳,获得10
12秒前
12秒前
1Yer6完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
上官若男应助刘晓倩采纳,获得10
13秒前
路漫漫完成签到,获得积分10
14秒前
温暖白筠发布了新的文献求助10
14秒前
大个应助喜喜采纳,获得10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483504
求助须知:如何正确求助?哪些是违规求助? 3072815
关于积分的说明 9128148
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517190
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797