缺血
医学
再灌注损伤
药理学
生药学
传统医学
内科学
化学
生物活性
生物化学
体外
作者
Hai Zhang,Yahong Zhao,Zhengxiang Xia,Hongli Du,Yue Gao,Dan Xue,Zhenyu Zhu,Yifeng Chai
标识
DOI:10.1016/j.jep.2017.09.003
摘要
Abstract Ethnopharmacological relevance Myocardial ischemia-reperfusion (I/R) injury is a serious injury that is resulted from the recovery of blood supply after myocardial ischemia. Yangxinshi tablet is a compound Chinese herbal preparation and often used to alleviate the myocardial ischemia in clinical, but its protective mechanism of anti-myocardial ischemia reperfusion injury remains unclear. The objective of this study was to evaluate the anti-I/R injury effect of Yangxinshi tablet on a myocardial I/R rat model and to identify serum biomarker metabolites associated with I/R based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF/MS) metabolomic method, and explore the metabolic mechanism of anti-I/R injury of Yangxinshi tablet. Materials and methods Unsupervised principle component analysis highlighted significant differences in the metabolome of the myocardial I/R, healthy control and drug-treated rats. Partial least squares-discriminant analysis revealed 25 metabolites as the most potential biomarker metabolites discriminating the myocardial I/R rats and control rats. Most of the metabolites were primarily involved in oxidative stress, energy metabolism, fatty acid metabolism, amino acid metabolism. These metabolites were validated by assessing the efficacy after intragastric administration of Yangxinshit ablet to the myocardial I/R rat model. Results Based on metabolomic results, the action mechanism of anti-I/R injury of Yangxinshi tablet was concluded as follows: (1) enhance the ability of scavenging free radicals and reactive oxygen species in vivo; (2) provide energy for myocardium via accelerating the intracellular carnitine transportion to accelerate the oxidation of fatty acid and (3) attenuate ceramide to reduce cardiomyocyte apoptosis. Conclusions Yangxinshi tablet has cardio-protection effects on I/R rats via regulation of multiple metabolic pathways involving in oxidative stress, energy metabolism, fatty acid, and amino acid metabolisms. This study will be meaningful for its clinical application and valuable for further exploring the action mechanism of Yangxinshi tablet.
科研通智能强力驱动
Strongly Powered by AbleSci AI