An automated toolchain for the data-driven and dynamical modeling of combined sewer systems

工具链 合流下水道 生活污水管 计算机科学 系统工程 环境科学 工程类 环境工程 软件 程序设计语言 生态学 雨水 地表径流 生物
作者
Sara C. Troutman,Nathaniel Schambach,Nancy G. Love,Branko Kerkez
出处
期刊:Water Research [Elsevier BV]
卷期号:126: 88-100 被引量:25
标识
DOI:10.1016/j.watres.2017.08.065
摘要

The recent availability and affordability of sensors and wireless communications is poised to transform our understanding and management of water systems. This will enable a new generation of adaptive water models that can ingest large quantities of sensor feeds and provide the best possible estimates of current and future conditions. To that end, this paper presents a novel data-driven identification/learning toolchain for combined sewer and stormwater systems. The toolchain uses Gaussian Processes to model dry-weather flows (domestic wastewater) and dynamical System Identification to represent wet-weather flows (rainfall runoff). By using a large and high-resolution sensor dataset across a real-world combined sewer system , we illustrate that relatively simple models can achieve good forecasting performance, subject to a finely-tuned and continuous re-calibration procedure. The data requirements of the proposed toolchain are evaluated, showing sensitivity to spatial heterogeneity and unique time-scales across which models of individual sites remain representative. We identify a near-optimal time record, or data "age," for which historical measurements must be available to ensure good forecasting performance. We also show that more data do not always lead to a better model due to system uncertainty, such as shifts in climate or seasonal wastewater patterns. Furthermore, the individual components of the model (wet- and dry-weather) often require different volumes of historical observations for optimal forecasting performance, thus highlighting the need for a flexible re-calibration toolchain rather than a one-size-fits-all approach. • A data-driven toolchain to forecast wet and dry ows in combined sewer systems. • Characterization of system uncertainty given the changing nature of water systems. • Discussion of how often models need to be re-calibrated to react the water system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyhhh完成签到,获得积分10
刚刚
Hedy应助jessica采纳,获得10
刚刚
爱读多读发布了新的文献求助10
刚刚
樊樊发布了新的文献求助10
1秒前
1秒前
吃花椒的喵酱完成签到,获得积分10
1秒前
支傲菡完成签到,获得积分10
2秒前
2秒前
恒温失效发布了新的文献求助10
2秒前
现代的访曼应助Maga采纳,获得20
2秒前
唠叨的月光完成签到,获得积分20
3秒前
3秒前
4秒前
Tink完成签到,获得积分10
4秒前
4秒前
美满花生发布了新的文献求助10
5秒前
7秒前
8秒前
8秒前
9秒前
司空豁发布了新的文献求助30
9秒前
SYLH应助晚安好梦采纳,获得10
11秒前
12秒前
嘿ha完成签到 ,获得积分10
12秒前
啊啊啊啊跃完成签到,获得积分10
13秒前
14秒前
在野靡生应助何宛秋采纳,获得30
15秒前
16秒前
HTY完成签到,获得积分10
16秒前
Maga完成签到,获得积分10
16秒前
歇菜发布了新的文献求助10
16秒前
大个应助kevin采纳,获得10
17秒前
xiaotaiyang完成签到,获得积分10
17秒前
怕孤独的忆南完成签到,获得积分10
18秒前
土木搬砖法律完成签到,获得积分10
18秒前
万能图书馆应助HTY采纳,获得10
19秒前
19秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
yookia应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032