清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An automated toolchain for the data-driven and dynamical modeling of combined sewer systems

工具链 合流下水道 生活污水管 计算机科学 系统工程 环境科学 工程类 环境工程 软件 程序设计语言 生态学 地表径流 生物 雨水
作者
Sara C. Troutman,Nathaniel Schambach,Nancy G. Love,Branko Kerkez
出处
期刊:Water Research [Elsevier]
卷期号:126: 88-100 被引量:25
标识
DOI:10.1016/j.watres.2017.08.065
摘要

The recent availability and affordability of sensors and wireless communications is poised to transform our understanding and management of water systems. This will enable a new generation of adaptive water models that can ingest large quantities of sensor feeds and provide the best possible estimates of current and future conditions. To that end, this paper presents a novel data-driven identification/learning toolchain for combined sewer and stormwater systems. The toolchain uses Gaussian Processes to model dry-weather flows (domestic wastewater) and dynamical System Identification to represent wet-weather flows (rainfall runoff). By using a large and high-resolution sensor dataset across a real-world combined sewer system , we illustrate that relatively simple models can achieve good forecasting performance, subject to a finely-tuned and continuous re-calibration procedure. The data requirements of the proposed toolchain are evaluated, showing sensitivity to spatial heterogeneity and unique time-scales across which models of individual sites remain representative. We identify a near-optimal time record, or data "age," for which historical measurements must be available to ensure good forecasting performance. We also show that more data do not always lead to a better model due to system uncertainty, such as shifts in climate or seasonal wastewater patterns. Furthermore, the individual components of the model (wet- and dry-weather) often require different volumes of historical observations for optimal forecasting performance, thus highlighting the need for a flexible re-calibration toolchain rather than a one-size-fits-all approach. • A data-driven toolchain to forecast wet and dry ows in combined sewer systems. • Characterization of system uncertainty given the changing nature of water systems. • Discussion of how often models need to be re-calibrated to react the water system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱静静举报秦秦秦求助涉嫌违规
21秒前
48秒前
57秒前
LTJ完成签到,获得积分10
1分钟前
机灵哲瀚完成签到,获得积分10
1分钟前
1分钟前
1分钟前
通科研完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
方白秋完成签到,获得积分10
6分钟前
6分钟前
田様应助qdlsc采纳,获得10
6分钟前
6分钟前
6分钟前
核桃发布了新的文献求助10
6分钟前
6分钟前
qdlsc发布了新的文献求助10
6分钟前
迅速的蜡烛完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
jingjili发布了新的文献求助10
8分钟前
yufanhui应助Wei采纳,获得20
8分钟前
8分钟前
852应助樱桃味的火苗采纳,获得10
8分钟前
8分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142