化学
免疫球蛋白Fc片段
碎片结晶区
离解(化学)
抗体
生物物理学
分子
立体化学
免疫球蛋白G
受体
生物化学
免疫学
生物
有机化学
物理化学
作者
Theo Rispens,Joyce Meesters,Tamara H. den Bleker,Pleuni Ooijevaar‐de Heer,Janine Schuurman,Paul W.H.I. Parren,Aran F. Labrijn,Rob C. Aalberse
标识
DOI:10.1016/j.molimm.2012.06.012
摘要
Human IgG4 antibodies are remarkable not only because they can dynamically exchange half-molecules (Fab-arm exchange) but also for their ability to interact with the Fc part of IgG4 and other IgG subclasses. This rheumatoid factor-like binding of IgG4 does not appear to take place spontaneously, because it is only observed to solid-phase or antigen-bound IgG. We hypothesized that Fc-Fc interactions might involve (partial) dissociation of heavy chains. We investigated the molecular basis of these Fc-Fc interactions, and found that the structural features important for the exchange reaction also control the Fc binding activity. In particular, if arginine-409 in the CH(3)-CH(3) interface in IgG4 is mutated to lysine (the equivalent in IgG1), Fc-Fc interactions are formed 3 orders of magnitude less efficiently compared to the wild-type. This mutation was previously found to increase the CH(3)-CH(3) interaction strength in IgG4. Furthermore, of the two hinge isomers of IgG4, the intra-chain (non-covalently linked) form was found to form Fc-Fc interactions, but not the inter-chain form. Together, these results demonstrate that Fc-Fc interactions of IgG4 involve (partial or complete) dissociation of heavy chains. The promiscuity to other IgG subclasses suggests that IgG4 might act as scavenger to IgG molecules with impaired structural integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI