清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RESAMPLING TESTS FOR META-ANALYSIS OF ECOLOGICAL DATA

重采样 自举(财务) 同质性(统计学) 统计 置信区间 统计假设检验 荟萃分析 推论 稳健性(进化) 计量经济学 统计推断 参数统计 计算机科学 生态学 数学 人工智能 生物 医学 内科学 基因 生物化学
作者
Dean C. Adams,Jessica Gurevitch,Michael S. Rosenberg
出处
期刊:Ecology [Wiley]
卷期号:78 (4): 1277-1283 被引量:602
标识
DOI:10.1890/0012-9658(1997)078[1277:rtfmao]2.0.co;2
摘要

Meta-analysis is a statistical technique that allows one to combine the results from multiple studies to glean inferences on the overall importance of various phenomena. This method can prove to be more informative than common “vote counting,” in which the number of significant results is compared to the number with nonsignificant results to determine whether the phenomenon of interest is globally important. While the use of meta-analysis is widespread in medicine and the social sciences, only recently has it been applied to ecological questions. We compared the results of parametric confidence limits and homogeneity statistics commonly obtained through meta-analysis to those obtained from resampling methods to ascertain the robustness of standard meta-analytic techniques. We found that confidence limits based on bootstrapping methods were wider than standard confidence limits, implying that resampling estimates are more conservative. In addition, we found that significance tests based on homogeneity statistics differed occasionally from results of randomization tests, implying that inferences based solely on chi-square significance tests may lead to erroneous conclusions. We conclude that resampling methods should be incorporated in meta-analysis studies, to ensure proper evaluation of main effects in ecological studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
奶奶的龙应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
15秒前
xiang完成签到,获得积分20
44秒前
59秒前
2分钟前
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大雁完成签到 ,获得积分0
3分钟前
老老熊完成签到,获得积分10
3分钟前
Una完成签到,获得积分10
3分钟前
合作完成签到 ,获得积分10
3分钟前
欣欣完成签到,获得积分10
3分钟前
一天完成签到 ,获得积分10
3分钟前
甜甜的静柏完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
奶奶的龙应助科研通管家采纳,获得30
4分钟前
sujingbo完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
你好完成签到 ,获得积分10
5分钟前
5分钟前
结实的寒梦完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
尚青华完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016