亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The authors reply:

无线电技术 人工智能 支持向量机 医学 特征选择 核医学 机器学习 计算机科学
作者
Junjiong Zheng,Hao Yu,Zhuo Wu,Xiaoguang Zou,Tianxin Lin
出处
期刊:Kidney International [Elsevier]
卷期号:100 (5): 1142-1143
标识
DOI:10.1016/j.kint.2021.08.009
摘要

We thank Zhang et al.1 Zhang L. Zhang B. A machine learning–based radiomic model for predicting urinary infection stone. Kidney Int. 2021; 100: 1142 Abstract Full Text Full Text PDF Scopus (2) Google Scholar for their interest in our study. 2 Zheng J. Yu H. Batur J. et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021; 100: 870-880 Abstract Full Text Full Text PDF Scopus (16) Google Scholar Usually, feature reproducibility assessment is implemented for data dimension reduction. However, because the margins of a urinary stone in computed tomography images are clear, satisfactory interobserver feature extraction reproducibility was achieved in our study, with interclass correlation coefficients ranging from 0.848 to 1.000. Therefore, all extracted radiomics features were used for the subsequent modeling. Moreover, the 24 selected features had only a low pairwise correlation (mean absolute Spearman, ρ = 0.196), indicating that these features provide complementary information. 3 Grossmann P. Narayan V. Chang K. et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017; 19: 1688-1697 Crossref PubMed Scopus (78) Google Scholar We compared the performances of 4 feature selection methods and chose the optimal model in our study. This approach was also used in other radiomics studies. 4 Xu L. Yang P. Liang W. et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019; 9: 5374-5385 Crossref PubMed Scopus (93) Google Scholar ,5 Saadani H. van der Hiel B. Aalbersberg E.A. et al. Metabolic biomarker-based BRAFV600 mutation association and prediction in melanoma. J Nucl Med. 2019; 60: 1545-1552 Crossref PubMed Scopus (19) Google Scholar The favorable performance of our radiomics model in the validation sets also indicated the reliability of this method. The method recommended by Zhang et al. is also reasonable, which needs further investigation. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learningKidney InternationalVol. 100Issue 4PreviewUrolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Full-Text PDF A machine learning–based radiomic model for predicting urinary infection stoneKidney InternationalVol. 100Issue 5PreviewWe read with great interest the article by Zheng et al.,1 published in Kidney International. This study leveraged a noninvasive radiomic model to preoperatively predict infection stones. Despite the encouraging results, several methodological issues should be noted. A robust radiomic biomarker across various image acquisitions and feature selection methods is crucial for the reliability of subsequent modeling. The authors should include the radiomic features that did not show significant differences due to machine and acquisition parameters. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wop111完成签到,获得积分0
刚刚
侃侃完成签到,获得积分10
18秒前
奚瑞发布了新的文献求助10
36秒前
37秒前
机灵的衬衫完成签到 ,获得积分10
39秒前
Carl发布了新的文献求助10
39秒前
40秒前
科研通AI6应助Geass采纳,获得10
41秒前
小花生发布了新的文献求助10
44秒前
亦楚bank发布了新的文献求助30
45秒前
趴趴完成签到,获得积分10
46秒前
科研通AI6应助小胖采纳,获得10
46秒前
今后应助沉默的小天鹅采纳,获得10
47秒前
50秒前
月关完成签到 ,获得积分10
58秒前
SciGPT应助亦楚bank采纳,获得30
59秒前
范范发布了新的文献求助10
1分钟前
Orange应助Carl采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
清脆的飞丹完成签到,获得积分10
1分钟前
sn完成签到 ,获得积分10
1分钟前
SiboN完成签到,获得积分10
1分钟前
无花果应助lf采纳,获得10
1分钟前
田様应助Winfred采纳,获得10
1分钟前
Geass发布了新的文献求助10
1分钟前
小路发布了新的文献求助10
1分钟前
默默从波关注了科研通微信公众号
1分钟前
1分钟前
一粟完成签到 ,获得积分10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
wang发布了新的文献求助10
1分钟前
超多肉肉肉肉完成签到 ,获得积分10
1分钟前
小路完成签到,获得积分10
1分钟前
1分钟前
完美世界应助wang采纳,获得10
1分钟前
默默从波发布了新的文献求助10
1分钟前
LPPQBB应助怕孤单的绝山采纳,获得80
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334769
求助须知:如何正确求助?哪些是违规求助? 4472812
关于积分的说明 13920830
捐赠科研通 4366779
什么是DOI,文献DOI怎么找? 2399263
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363297