The authors reply:

无线电技术 人工智能 支持向量机 医学 特征选择 核医学 机器学习 计算机科学
作者
Junjiong Zheng,Hao Yu,Zhuo Wu,Xiaoguang Zou,Tianxin Lin
出处
期刊:Kidney International [Elsevier]
卷期号:100 (5): 1142-1143
标识
DOI:10.1016/j.kint.2021.08.009
摘要

We thank Zhang et al.1 Zhang L. Zhang B. A machine learning–based radiomic model for predicting urinary infection stone. Kidney Int. 2021; 100: 1142 Abstract Full Text Full Text PDF Scopus (2) Google Scholar for their interest in our study. 2 Zheng J. Yu H. Batur J. et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021; 100: 870-880 Abstract Full Text Full Text PDF Scopus (16) Google Scholar Usually, feature reproducibility assessment is implemented for data dimension reduction. However, because the margins of a urinary stone in computed tomography images are clear, satisfactory interobserver feature extraction reproducibility was achieved in our study, with interclass correlation coefficients ranging from 0.848 to 1.000. Therefore, all extracted radiomics features were used for the subsequent modeling. Moreover, the 24 selected features had only a low pairwise correlation (mean absolute Spearman, ρ = 0.196), indicating that these features provide complementary information. 3 Grossmann P. Narayan V. Chang K. et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017; 19: 1688-1697 Crossref PubMed Scopus (78) Google Scholar We compared the performances of 4 feature selection methods and chose the optimal model in our study. This approach was also used in other radiomics studies. 4 Xu L. Yang P. Liang W. et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019; 9: 5374-5385 Crossref PubMed Scopus (93) Google Scholar ,5 Saadani H. van der Hiel B. Aalbersberg E.A. et al. Metabolic biomarker-based BRAFV600 mutation association and prediction in melanoma. J Nucl Med. 2019; 60: 1545-1552 Crossref PubMed Scopus (19) Google Scholar The favorable performance of our radiomics model in the validation sets also indicated the reliability of this method. The method recommended by Zhang et al. is also reasonable, which needs further investigation. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learningKidney InternationalVol. 100Issue 4PreviewUrolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Full-Text PDF A machine learning–based radiomic model for predicting urinary infection stoneKidney InternationalVol. 100Issue 5PreviewWe read with great interest the article by Zheng et al.,1 published in Kidney International. This study leveraged a noninvasive radiomic model to preoperatively predict infection stones. Despite the encouraging results, several methodological issues should be noted. A robust radiomic biomarker across various image acquisitions and feature selection methods is crucial for the reliability of subsequent modeling. The authors should include the radiomic features that did not show significant differences due to machine and acquisition parameters. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助gulugulu采纳,获得10
刚刚
1秒前
王美娟发布了新的文献求助10
1秒前
longlong完成签到,获得积分10
1秒前
完美世界应助务实的乐珍采纳,获得10
1秒前
丘比特应助kelexh采纳,获得10
2秒前
2秒前
3秒前
星小发布了新的文献求助10
4秒前
4秒前
5秒前
宇文傲龙应助寒冷沛柔采纳,获得10
5秒前
深情安青应助趙途嘵生采纳,获得10
5秒前
5秒前
5秒前
cfsyyfujia发布了新的文献求助10
6秒前
19554133922发布了新的文献求助10
7秒前
Gilana发布了新的文献求助10
7秒前
科研通AI5应助丰富语兰采纳,获得10
7秒前
英姑应助可靠的采萱采纳,获得10
8秒前
科研通AI5应助彪彪采纳,获得10
8秒前
9秒前
文几完成签到 ,获得积分10
9秒前
Mimi完成签到,获得积分20
9秒前
大个应助baby的跑男采纳,获得10
9秒前
明亮涔发布了新的文献求助10
9秒前
乐观紫发布了新的文献求助10
10秒前
10秒前
幽默白柏完成签到,获得积分10
10秒前
11秒前
12秒前
共享精神应助林少玮采纳,获得10
12秒前
oyu完成签到,获得积分20
12秒前
肖林完成签到,获得积分10
12秒前
丘比特应助王美娟采纳,获得10
13秒前
13秒前
13秒前
狂野绿竹发布了新的文献求助10
13秒前
scy发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Therapeutic procedures and clinical efficacy of the clear S8-SGHB appliance for treatment of skeletal Class II malocclusion 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547305
求助须知:如何正确求助?哪些是违规求助? 3124271
关于积分的说明 9358882
捐赠科研通 2822911
什么是DOI,文献DOI怎么找? 1551723
邀请新用户注册赠送积分活动 723669
科研通“疑难数据库(出版商)”最低求助积分说明 713884