The authors reply:

无线电技术 人工智能 支持向量机 医学 特征选择 核医学 机器学习 计算机科学
作者
Junjiong Zheng,Hao Yu,Zhuo Wu,Xiaoguang Zou,Tianxin Lin
出处
期刊:Kidney International [Elsevier BV]
卷期号:100 (5): 1142-1143
标识
DOI:10.1016/j.kint.2021.08.009
摘要

We thank Zhang et al.1 Zhang L. Zhang B. A machine learning–based radiomic model for predicting urinary infection stone. Kidney Int. 2021; 100: 1142 Abstract Full Text Full Text PDF Scopus (2) Google Scholar for their interest in our study. 2 Zheng J. Yu H. Batur J. et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021; 100: 870-880 Abstract Full Text Full Text PDF Scopus (16) Google Scholar Usually, feature reproducibility assessment is implemented for data dimension reduction. However, because the margins of a urinary stone in computed tomography images are clear, satisfactory interobserver feature extraction reproducibility was achieved in our study, with interclass correlation coefficients ranging from 0.848 to 1.000. Therefore, all extracted radiomics features were used for the subsequent modeling. Moreover, the 24 selected features had only a low pairwise correlation (mean absolute Spearman, ρ = 0.196), indicating that these features provide complementary information. 3 Grossmann P. Narayan V. Chang K. et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017; 19: 1688-1697 Crossref PubMed Scopus (78) Google Scholar We compared the performances of 4 feature selection methods and chose the optimal model in our study. This approach was also used in other radiomics studies. 4 Xu L. Yang P. Liang W. et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019; 9: 5374-5385 Crossref PubMed Scopus (93) Google Scholar ,5 Saadani H. van der Hiel B. Aalbersberg E.A. et al. Metabolic biomarker-based BRAFV600 mutation association and prediction in melanoma. J Nucl Med. 2019; 60: 1545-1552 Crossref PubMed Scopus (19) Google Scholar The favorable performance of our radiomics model in the validation sets also indicated the reliability of this method. The method recommended by Zhang et al. is also reasonable, which needs further investigation. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learningKidney InternationalVol. 100Issue 4PreviewUrolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Full-Text PDF A machine learning–based radiomic model for predicting urinary infection stoneKidney InternationalVol. 100Issue 5PreviewWe read with great interest the article by Zheng et al.,1 published in Kidney International. This study leveraged a noninvasive radiomic model to preoperatively predict infection stones. Despite the encouraging results, several methodological issues should be noted. A robust radiomic biomarker across various image acquisitions and feature selection methods is crucial for the reliability of subsequent modeling. The authors should include the radiomic features that did not show significant differences due to machine and acquisition parameters. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
JasonSun完成签到,获得积分10
1秒前
1秒前
SciGPT应助缓慢易云采纳,获得10
2秒前
xuxu发布了新的文献求助20
2秒前
2秒前
2秒前
侯美琪完成签到 ,获得积分10
2秒前
3秒前
3秒前
苹果发布了新的文献求助10
3秒前
12334发布了新的文献求助10
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
大个应助渊_采纳,获得10
4秒前
4秒前
RockRedfoo完成签到 ,获得积分10
4秒前
scvsdz发布了新的文献求助10
5秒前
5秒前
Scidog完成签到,获得积分0
5秒前
谨言完成签到 ,获得积分10
6秒前
飘逸鸵鸟发布了新的文献求助10
6秒前
mobo完成签到,获得积分10
7秒前
减肥为窈窕完成签到,获得积分10
7秒前
烩面大师发布了新的文献求助10
7秒前
文龙发布了新的文献求助10
7秒前
TuT发布了新的文献求助10
7秒前
毛子涵发布了新的文献求助10
8秒前
8秒前
FooLeup立仔完成签到,获得积分10
8秒前
hhhh完成签到,获得积分10
8秒前
nan完成签到,获得积分10
9秒前
jeffyoung发布了新的文献求助10
9秒前
10秒前
赵浩宇发布了新的文献求助10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582