The authors reply:

无线电技术 人工智能 支持向量机 医学 特征选择 核医学 机器学习 计算机科学
作者
Junjiong Zheng,Hao Yu,Zhuo Wu,Xiaoguang Zou,Tianxin Lin
出处
期刊:Kidney International [Elsevier BV]
卷期号:100 (5): 1142-1143
标识
DOI:10.1016/j.kint.2021.08.009
摘要

We thank Zhang et al.1 Zhang L. Zhang B. A machine learning–based radiomic model for predicting urinary infection stone. Kidney Int. 2021; 100: 1142 Abstract Full Text Full Text PDF Scopus (2) Google Scholar for their interest in our study. 2 Zheng J. Yu H. Batur J. et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021; 100: 870-880 Abstract Full Text Full Text PDF Scopus (16) Google Scholar Usually, feature reproducibility assessment is implemented for data dimension reduction. However, because the margins of a urinary stone in computed tomography images are clear, satisfactory interobserver feature extraction reproducibility was achieved in our study, with interclass correlation coefficients ranging from 0.848 to 1.000. Therefore, all extracted radiomics features were used for the subsequent modeling. Moreover, the 24 selected features had only a low pairwise correlation (mean absolute Spearman, ρ = 0.196), indicating that these features provide complementary information. 3 Grossmann P. Narayan V. Chang K. et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017; 19: 1688-1697 Crossref PubMed Scopus (78) Google Scholar We compared the performances of 4 feature selection methods and chose the optimal model in our study. This approach was also used in other radiomics studies. 4 Xu L. Yang P. Liang W. et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019; 9: 5374-5385 Crossref PubMed Scopus (93) Google Scholar ,5 Saadani H. van der Hiel B. Aalbersberg E.A. et al. Metabolic biomarker-based BRAFV600 mutation association and prediction in melanoma. J Nucl Med. 2019; 60: 1545-1552 Crossref PubMed Scopus (19) Google Scholar The favorable performance of our radiomics model in the validation sets also indicated the reliability of this method. The method recommended by Zhang et al. is also reasonable, which needs further investigation. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learningKidney InternationalVol. 100Issue 4PreviewUrolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Full-Text PDF A machine learning–based radiomic model for predicting urinary infection stoneKidney InternationalVol. 100Issue 5PreviewWe read with great interest the article by Zheng et al.,1 published in Kidney International. This study leveraged a noninvasive radiomic model to preoperatively predict infection stones. Despite the encouraging results, several methodological issues should be noted. A robust radiomic biomarker across various image acquisitions and feature selection methods is crucial for the reliability of subsequent modeling. The authors should include the radiomic features that did not show significant differences due to machine and acquisition parameters. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betty2009完成签到,获得积分10
刚刚
Orange应助火焰向上采纳,获得10
刚刚
努力努力完成签到,获得积分10
刚刚
atl完成签到,获得积分10
1秒前
PAQ发布了新的文献求助10
1秒前
1秒前
余鱼发布了新的文献求助10
2秒前
西瓜橙子完成签到,获得积分10
3秒前
4秒前
花痴的慕蕊完成签到,获得积分10
5秒前
李健的粉丝团团长应助DG采纳,获得10
5秒前
lin发布了新的文献求助10
7秒前
8秒前
郎谋完成签到,获得积分10
8秒前
万能图书馆应助蓝河采纳,获得10
9秒前
生物狗发布了新的文献求助30
10秒前
CodeCraft应助冷艳的冬寒采纳,获得10
11秒前
King完成签到,获得积分10
11秒前
孙帅完成签到,获得积分10
12秒前
自觉士萧发布了新的文献求助10
13秒前
火焰向上发布了新的文献求助10
14秒前
17秒前
Charlie发布了新的文献求助10
17秒前
liuzhongyi发布了新的文献求助10
18秒前
余鱼发布了新的文献求助10
18秒前
20秒前
JamesPei应助自觉士萧采纳,获得10
20秒前
21秒前
21秒前
电致阿光完成签到,获得积分10
23秒前
kmkz发布了新的文献求助10
23秒前
科研通AI6应助氤氲采纳,获得10
24秒前
24秒前
专注夏兰发布了新的文献求助10
24秒前
123lx完成签到,获得积分10
24秒前
25秒前
bkagyin应助怡然的寇采纳,获得10
25秒前
Adam_Lan发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083211
求助须知:如何正确求助?哪些是违规求助? 4300362
关于积分的说明 13399065
捐赠科研通 4124471
什么是DOI,文献DOI怎么找? 2258859
邀请新用户注册赠送积分活动 1263116
关于科研通互助平台的介绍 1197164