A hybrid ensemble learning-based prediction model to minimise delay in air cargo transport using bagging and stacking

决策树 集成学习 过程(计算) 提前期 地铁列车时刻表 计算机科学 运筹学 工程类 人工智能 运营管理 操作系统
作者
Rosalin Sahoo,Ajit Kumar Pasayat,Bhaskar Bhowmick,Kiran Fernandes,Manoj Kumar Tiwari
出处
期刊:International Journal of Production Research [Informa]
卷期号:60 (2): 644-660 被引量:6
标识
DOI:10.1080/00207543.2021.2013563
摘要

Manufacturing productivity is inextricably linked to air freight handling for the global delivery of finished and semi-finished goods. In this article, our focus is to capture the transport risk associated with air freight which is the difference between the actual and the planned time of arrival of a shipment. To mitigate the time-related uncertainties, it is essential to predict the delays with adequate precision. Initially, data from a case study in the transportation and logistics sector were pre-processed and divided into categories based on the duration of the delays in various legs. Existing datasets are transformed into a series of features, followed by extracting important features using a decision tree-based algorithm. To predict the delay with maximum accuracy, we used an improved hybrid ensemble learning-based prediction model with bagging and stacking enabled by characteristics like time, flight schedule, and transport legs. We also calculated the dependency of accuracy on the point in time during business process execution is examined while predicting. Our results show all predictive methods consistently have a precision of at least 70 per cent, provided a lead-time of half the duration of the process. Consistently, the proposed model provides strategic and sustainable insights to decision-makers for cargo handling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴西装完成签到 ,获得积分10
刚刚
shbkmy完成签到,获得积分10
刚刚
1秒前
星辰大海应助fjhsg25采纳,获得10
2秒前
水123发布了新的文献求助10
3秒前
3秒前
JiaJia发布了新的文献求助10
3秒前
优雅的皮卡丘完成签到,获得积分10
4秒前
4秒前
FashionBoy应助可爱中蓝采纳,获得10
4秒前
5秒前
5秒前
XxxxxxENT完成签到 ,获得积分10
5秒前
6秒前
ZLL发布了新的文献求助10
6秒前
大成完成签到,获得积分10
7秒前
xuan发布了新的文献求助10
9秒前
金枪鱼子完成签到,获得积分10
9秒前
乐观忆翠关注了科研通微信公众号
9秒前
迷路的十四完成签到,获得积分10
9秒前
10秒前
冰糖糖橘完成签到 ,获得积分10
10秒前
ks完成签到,获得积分10
10秒前
桐桐应助水123采纳,获得10
10秒前
大成发布了新的文献求助10
11秒前
言午完成签到 ,获得积分10
11秒前
完美麦片完成签到,获得积分10
12秒前
科研通AI6应助khx采纳,获得10
12秒前
传奇3应助tong采纳,获得10
13秒前
情怀应助savesunshine1022采纳,获得10
13秒前
不朽阳神完成签到,获得积分10
14秒前
15秒前
狂野沧海完成签到,获得积分10
15秒前
15秒前
yls完成签到,获得积分10
16秒前
水果完成签到,获得积分10
16秒前
pangdahai完成签到,获得积分10
16秒前
JiAWee完成签到 ,获得积分10
17秒前
张道微完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167