已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Multimodal Neural Network Based on Data-Feature Fusion for Patient-Specific Quality Assurance

质量保证 模态(人机交互) 计算机科学 特征(语言学) 人工智能 人工神经网络 数据挖掘 模式识别(心理学) 医学 语言学 哲学 病理 外部质量评估
作者
Ting Hu,Lizhang Xie,Lei Zhang,Guangjun Li,Yi Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (01) 被引量:13
标识
DOI:10.1142/s0129065721500556
摘要

Patient-specific quality assurance (QA) for Volumetric Modulated Arc Therapy (VMAT) plans is routinely performed in the clinical. However, it is labor-intensive and time-consuming for medical physicists. QA prediction models can address these shortcomings and improve efficiency. Current approaches mainly focus on single cancer and single modality data. They are not applicable to clinical practice. To assess the accuracy of QA results for VMAT plans, this paper presents a new model that learns complementary features from the multi-modal data to predict the gamma passing rate (GPR). According to the characteristics of VMAT plans, a feature-data fusion approach is designed to fuse the features of imaging and non-imaging information in the model. In this study, 690 VMAT plans are collected encompassing more than ten diseases. The model can accurately predict the most VMAT plans at all three gamma criteria: 2%/2 mm, 3%/2 mm and 3%/3 mm. The mean absolute error between the predicted and measured GPR is 2.17%, 1.16% and 0.71%, respectively. The maximum deviation between the predicted and measured GPR is 3.46%, 4.6%, 8.56%, respectively. The proposed model is effective, and the features of the two modalities significantly influence QA results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘燕完成签到,获得积分10
刚刚
林松发布了新的文献求助10
1秒前
Mn应助满意的破茧采纳,获得10
2秒前
旅途之人发布了新的文献求助10
2秒前
Ivan完成签到,获得积分10
6秒前
务实一斩发布了新的文献求助10
6秒前
linyalala发布了新的文献求助10
7秒前
无辜凡灵完成签到,获得积分10
8秒前
Jasper应助longtengfei采纳,获得10
8秒前
8秒前
李爱国应助兴奋硬币采纳,获得10
9秒前
打打应助zycdx3906采纳,获得10
9秒前
11秒前
活泼鹤轩发布了新的文献求助10
11秒前
Owen应助LL采纳,获得10
11秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
爱静静应助科研通管家采纳,获得10
15秒前
RC_Wang应助科研通管家采纳,获得50
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
16秒前
ding应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
sjm1311218完成签到,获得积分10
17秒前
18秒前
19秒前
无解应助xiaobai采纳,获得50
23秒前
GuMingyang发布了新的文献求助10
25秒前
CodeCraft应助123采纳,获得10
25秒前
科研通AI5应助linyalala采纳,获得10
25秒前
27秒前
活泼鹤轩完成签到,获得积分10
29秒前
Akim应助刘燕采纳,获得10
29秒前
清爽的雨竹完成签到 ,获得积分10
29秒前
30秒前
Bao_o_o完成签到,获得积分10
30秒前
31秒前
longtengfei发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538786
求助须知:如何正确求助?哪些是违规求助? 3116482
关于积分的说明 9325411
捐赠科研通 2814378
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720657
科研通“疑难数据库(出版商)”最低求助积分说明 712109