迭代学习控制
控制理论(社会学)
扰动(地质)
非线性系统
有界函数
计算机科学
方案(数学)
观察员(物理)
事件(粒子物理)
跟踪(教育)
国家观察员
控制(管理)
控制工程
数学
人工智能
工程类
物理
古生物学
数学分析
生物
量子力学
教育学
心理学
作者
Xianming Wang,Wen Qin,Ju H. Park,Mouquan Shen
标识
DOI:10.1016/j.isatra.2021.11.026
摘要
This paper is dedicated to event-triggered data-driven control of nonlinear systems with unknown disturbance via model free iterative learning approach. An extended state observer is employed to reconstruct the disturbance in system output. An event-triggered model free iterative learning control strategy is constructed by system input, system output and the reconstructed disturbance. Sufficient conditions are proposed to make the resultant tracking error system be uniform ultimate bounded. Simulation examples are provided to validate the effectiveness of the proposed scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI