Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800℃ in a TiAl alloy

材料科学 层状结构 动态再结晶 再结晶(地质) 合金 延展性(地球科学) 加工硬化 可塑性 变形机理 微观结构 硬化(计算) 复合材料 严重塑性变形 冶金 变形(气象学) 热加工 蠕动 古生物学 生物 图层(电子)
作者
Guoming Zheng,Bin Tang,Songkuan Zhao,William Yi Wang,Xiaofei Chen,Lei Zhu,Jinshan Li
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:225: 117585-117585 被引量:96
标识
DOI:10.1016/j.actamat.2021.117585
摘要

Improving the room temperature (RT) strength/ductility and hot-working capacity based on lamellar microstructures is of great significance for the practical application of TiAl alloys. However, the microstructure of these alloys has not been clearly identified yet. In this work, two new microstructures, here named triple-phase triple-state (T-T) and triple-phase dual-state (T-D) structures, were developed using a two-step heat treatment process in the Ti-43.5Al-4Nb-1Mo-0.1B (TNM) alloy, which also contains the pearlitic-like microstructure (PM) transformed through triggering a massive cellular response (CR). These two microstructures significantly improved the alloy strength. Furthermore, their ductility at RT and 800 ℃ was enhanced twice and 5, 6 times with respect to that of the lamellar microstructure with nano-scale interlamellar spacing, respectively. It was revealed that the formation of abundant deformation twins and their intersections in PMs during plastic deformation, cause prominent strain hardening and the dynamic Hall-Patch effect. This results in a simultaneous improvement of the RT strength and plasticity and promotes dynamic recrystallization at temperatures lower than 800 ℃; thus, the plasticity is dramatically enhanced at elevated temperatures. This structural design strategy should be extendable to other TiAl systems that can undergo a CR and provides a promising new pathway for solving the severe engineering challenges caused by the low RT plasticity and poor hot-working capacity of TiAl alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Yun采纳,获得10
刚刚
刚刚
lalaland完成签到,获得积分10
刚刚
1秒前
1秒前
鹿立轩完成签到,获得积分10
3秒前
4秒前
Shawn完成签到,获得积分10
4秒前
小蘑菇应助哈哈哈采纳,获得10
4秒前
5秒前
6秒前
李爱国应助恋雅颖月采纳,获得10
6秒前
7秒前
留白发布了新的文献求助10
7秒前
fdkufghkd完成签到,获得积分10
10秒前
11秒前
11秒前
懵懂的幻桃完成签到 ,获得积分10
11秒前
flyfish完成签到,获得积分10
12秒前
12秒前
上官若男应助斯文莺采纳,获得30
13秒前
14秒前
14秒前
15秒前
Yun发布了新的文献求助10
15秒前
15秒前
15秒前
kyra发布了新的文献求助10
16秒前
xiaoze发布了新的文献求助10
16秒前
17秒前
17秒前
小蘑菇应助Yana1311采纳,获得10
18秒前
18秒前
傻傻的小刺猬完成签到,获得积分10
18秒前
18秒前
18秒前
ColdSunWu发布了新的文献求助10
19秒前
小坤同学发布了新的文献求助10
19秒前
132发布了新的文献求助30
20秒前
轻松小张完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021