协方差矩阵
数学
估计员
协方差矩阵的估计
协方差
抖动
量化(信号处理)
算法
应用数学
极小极大
高斯分布
数学优化
计算机科学
统计
量子力学
物理
计算机视觉
噪声整形
作者
Sjoerd Dirksen,Johannes Maly,Holger Rauhut
标识
DOI:10.1002/pamm.202100063
摘要
Abstract We consider the classical problem of estimating the covariance matrix of a subgaussian distribution from i.i.d. samples in the novel context of coarse quantization, i.e., instead of having full knowledge of the samples, they are quantized to one or two bits per entry. This problem occurs naturally in signal processing applications. We introduce new estimators in two different quantization scenarios and derive non‐asymptotic estimation error bounds in terms of the operator norm. In the first scenario we consider a simple, scale‐invariant one‐bit quantizer and derive an estimation result for the correlation matrix of a centered Gaussian distribution. In the second scenario, we add random dithering to the quantizer. In this case we can accurately estimate the full covariance matrix of a general subgaussian distribution by collecting two bits per entry of each sample. In both scenarios, our bounds apply to masked covariance estimation as well. We demonstrate the near‐optimality of our error bounds by deriving corresponding (minimax) lower bounds and using numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI