已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rrm发布了新的文献求助10
1秒前
任性迎南发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
乐乐应助坚定盈采纳,获得10
3秒前
3秒前
佟碧玉完成签到,获得积分10
5秒前
5秒前
5秒前
残剑月应助喜悦采纳,获得10
5秒前
111231发布了新的文献求助10
6秒前
年轻的钢笔完成签到 ,获得积分10
7秒前
juding发布了新的文献求助10
8秒前
浅音完成签到,获得积分10
10秒前
西因发布了新的文献求助10
11秒前
善学以致用应助111231采纳,获得10
12秒前
NexusExplorer应助111231采纳,获得10
12秒前
香蕉觅云应助111231采纳,获得10
12秒前
充电宝应助111231采纳,获得10
12秒前
14秒前
SSSSCCCCIIII完成签到,获得积分10
15秒前
wanci应助西因采纳,获得10
16秒前
CipherSage应助西因采纳,获得10
16秒前
李健的小迷弟应助空林采纳,获得10
17秒前
123别认出我完成签到,获得积分10
18秒前
Orange应助111231采纳,获得10
18秒前
领导范儿应助111231采纳,获得10
18秒前
研友_VZG7GZ应助111231采纳,获得10
18秒前
丘比特应助111231采纳,获得10
18秒前
Owen应助111231采纳,获得10
18秒前
香蕉觅云应助111231采纳,获得10
18秒前
JamesPei应助111231采纳,获得10
18秒前
共享精神应助111231采纳,获得10
18秒前
CipherSage应助111231采纳,获得10
18秒前
领导范儿应助111231采纳,获得10
18秒前
saaa发布了新的文献求助10
19秒前
欢喜的毛豆完成签到 ,获得积分10
21秒前
tumankol发布了新的文献求助10
21秒前
jz完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602939
求助须知:如何正确求助?哪些是违规求助? 4688095
关于积分的说明 14852467
捐赠科研通 4686448
什么是DOI,文献DOI怎么找? 2540318
邀请新用户注册赠送积分活动 1506902
关于科研通互助平台的介绍 1471458