重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ccc完成签到,获得积分10
1秒前
123td发布了新的文献求助10
1秒前
1秒前
2秒前
若米关注了科研通微信公众号
2秒前
ChenChen完成签到,获得积分10
2秒前
迅速的易巧完成签到 ,获得积分10
2秒前
整齐续完成签到,获得积分20
3秒前
浮游应助MOMO采纳,获得10
3秒前
orixero应助府于杰采纳,获得10
3秒前
三木完成签到,获得积分10
4秒前
breaking发布了新的文献求助10
4秒前
XJ发布了新的文献求助10
4秒前
我是老大应助旺仔采纳,获得10
5秒前
共享精神应助吱唔朱采纳,获得10
5秒前
纪红琴完成签到,获得积分20
5秒前
谨慎青亦发布了新的文献求助10
5秒前
6秒前
Wendy发布了新的文献求助10
6秒前
脑洞疼应助范恒采纳,获得10
6秒前
myLv98完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
zhuzhuxia完成签到,获得积分10
9秒前
李健的小迷弟应助叶叶叶采纳,获得10
9秒前
9秒前
在水一方应助孑与采纳,获得10
10秒前
10秒前
谨慎青亦完成签到,获得积分10
10秒前
SciGPT应助ASSA采纳,获得10
11秒前
JamesPei应助小5采纳,获得10
12秒前
黑色天空发布了新的文献求助50
12秒前
qrwyqjbsd应助Draeck采纳,获得10
12秒前
12秒前
一路朝阳完成签到 ,获得积分10
12秒前
平泽唯发布了新的文献求助10
13秒前
Ayers完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654