Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
sunc发布了新的文献求助10
1秒前
as发布了新的文献求助10
2秒前
uon发布了新的文献求助30
2秒前
3秒前
3秒前
斩荆披棘发布了新的文献求助10
3秒前
3秒前
萝卜发布了新的文献求助10
4秒前
5秒前
5秒前
慕青应助gao456789采纳,获得10
5秒前
5秒前
苏苏完成签到 ,获得积分10
5秒前
吉尔吉斯斯坦完成签到 ,获得积分10
5秒前
6秒前
wy发布了新的文献求助10
6秒前
nienie发布了新的文献求助10
6秒前
bkagyin应助lonely陈采纳,获得10
7秒前
一一应助wise111采纳,获得20
7秒前
pilgrim发布了新的文献求助10
8秒前
chen完成签到,获得积分10
8秒前
mmol发布了新的文献求助10
8秒前
传奇3应助凶狠的白桃采纳,获得10
8秒前
大模型应助明天采纳,获得10
8秒前
小蘑菇应助汪队小跟班采纳,获得10
9秒前
Woodenman完成签到 ,获得积分10
9秒前
未央关注了科研通微信公众号
9秒前
田様应助Kate采纳,获得10
10秒前
独享发布了新的文献求助10
10秒前
11秒前
lin完成签到,获得积分10
12秒前
13秒前
13秒前
changping发布了新的文献求助10
14秒前
大个应助寒冰寒冰采纳,获得10
14秒前
李健的小迷弟应助苏航采纳,获得10
14秒前
KeZhihong完成签到,获得积分10
14秒前
李健应助BenBen采纳,获得10
15秒前
南乔发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437