Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_RLN0vZ发布了新的文献求助10
刚刚
刚刚
刚刚
神勇的雅香应助001采纳,获得10
1秒前
研友_V8RDYn完成签到,获得积分10
1秒前
zzznznnn发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
FFFFFFF应助晓军采纳,获得10
4秒前
wanci应助艺玲采纳,获得10
4秒前
jfc完成签到 ,获得积分10
4秒前
香蕉觅云应助月白采纳,获得10
4秒前
思源应助mmx采纳,获得10
4秒前
Diaory2023完成签到 ,获得积分0
4秒前
雪小岳完成签到,获得积分10
5秒前
李小明完成签到,获得积分10
5秒前
5秒前
白小白发布了新的文献求助10
6秒前
thchiang发布了新的文献求助30
6秒前
Crsip关注了科研通微信公众号
6秒前
乐乐应助camellia采纳,获得10
7秒前
小二郎应助无情的白桃采纳,获得10
7秒前
7秒前
研友_Zb1rln完成签到,获得积分10
9秒前
健身boy完成签到,获得积分10
9秒前
盛京烟雨行完成签到 ,获得积分10
9秒前
9秒前
心灵美的大山完成签到,获得积分10
9秒前
9秒前
yuan发布了新的文献求助10
10秒前
诚心八宝粥完成签到,获得积分10
10秒前
11秒前
艺术家完成签到 ,获得积分10
12秒前
12秒前
12秒前
DreamMaker完成签到 ,获得积分10
12秒前
自由完成签到 ,获得积分10
12秒前
请勿继续发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759