Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助独特的绮山采纳,获得10
1秒前
Smithjiang完成签到 ,获得积分10
1秒前
2秒前
sunny完成签到,获得积分10
2秒前
Akim应助旺仔采纳,获得10
4秒前
6秒前
Jessie完成签到 ,获得积分10
6秒前
fx发布了新的文献求助10
6秒前
热心幻天发布了新的文献求助10
6秒前
9秒前
9秒前
11秒前
小王完成签到,获得积分10
11秒前
12秒前
14秒前
鲸鱼完成签到,获得积分10
14秒前
14秒前
14秒前
princess发布了新的文献求助10
15秒前
魂断红颜发布了新的文献求助10
15秒前
15秒前
hydrogen完成签到,获得积分10
16秒前
天天快乐应助彩虹猫采纳,获得10
17秒前
科目三应助西扬采纳,获得10
17秒前
Yankexin完成签到,获得积分20
18秒前
虚心的夏青完成签到,获得积分10
18秒前
zxm1997完成签到,获得积分20
18秒前
knn完成签到,获得积分10
18秒前
LMBE1K完成签到 ,获得积分10
18秒前
ini完成签到,获得积分10
18秒前
18秒前
ASDS完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
顾矜应助热心幻天采纳,获得10
19秒前
庄生发布了新的文献求助10
20秒前
无极微光应助铁风筝芳芳采纳,获得20
20秒前
梅岱衍径发布了新的文献求助10
20秒前
21秒前
21秒前
美丽的寻梅完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537