Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Piky完成签到,获得积分20
1秒前
羊肉泡馍发布了新的文献求助10
1秒前
北极星应助kbkyvuy采纳,获得10
1秒前
多吃青菜完成签到,获得积分10
1秒前
1秒前
qiqi完成签到,获得积分10
2秒前
小艾发布了新的文献求助10
2秒前
3秒前
JeKing完成签到,获得积分10
3秒前
酷波er应助高贵的小熊猫采纳,获得10
3秒前
鳗鱼柚子完成签到 ,获得积分10
3秒前
ly完成签到 ,获得积分10
4秒前
无极微光应助Akjan采纳,获得20
4秒前
4秒前
瘦瘦怜阳发布了新的文献求助10
5秒前
溯777发布了新的文献求助10
5秒前
Piky发布了新的文献求助10
5秒前
Mercury完成签到,获得积分10
5秒前
5秒前
5秒前
李健应助果实采纳,获得10
6秒前
充电宝应助果实采纳,获得10
6秒前
隐形曼青应助果实采纳,获得10
6秒前
orixero应助果实采纳,获得10
6秒前
6秒前
6秒前
野性的半青完成签到,获得积分10
6秒前
LLLLLL完成签到,获得积分10
6秒前
季博常完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
季博常发布了新的文献求助10
8秒前
十二发布了新的文献求助10
9秒前
小斌子发布了新的文献求助10
9秒前
华仔应助Mercury采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530