Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向中恶发布了新的文献求助20
刚刚
叶长安发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
ZCM关闭了ZCM文献求助
3秒前
标致忆丹完成签到,获得积分10
3秒前
3秒前
filwasb发布了新的文献求助10
3秒前
棉花糖发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
小橙子发布了新的文献求助10
4秒前
斯文败类应助薯片采纳,获得10
5秒前
领导范儿应助狂野善愁采纳,获得10
5秒前
上官若男应助Xu采纳,获得10
5秒前
5秒前
领导范儿应助纯真忆安采纳,获得10
6秒前
6秒前
杨知意完成签到,获得积分10
6秒前
赘婿应助wuhao1采纳,获得10
7秒前
852应助wxz1998采纳,获得10
7秒前
悲凉的大船完成签到,获得积分10
7秒前
达奚多思发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
戒骄戒躁发布了新的文献求助10
8秒前
Laurie完成签到,获得积分10
8秒前
含糊的玲完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
薯片完成签到,获得积分10
10秒前
123116011411完成签到,获得积分20
10秒前
10秒前
动听以晴发布了新的文献求助10
10秒前
慢慢发布了新的文献求助10
10秒前
SciGPT应助惠葶采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285