Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
无限雨文发布了新的文献求助10
2秒前
万能图书馆应助笨笨从凝采纳,获得10
2秒前
xiaoding发布了新的文献求助30
3秒前
3秒前
英俊的铭应助wq采纳,获得30
3秒前
肉圆发布了新的文献求助10
3秒前
爆米花应助小叮当采纳,获得10
3秒前
英姑应助玩家采纳,获得10
5秒前
张涛发布了新的文献求助10
5秒前
哎呀发布了新的文献求助10
6秒前
7秒前
7秒前
橙子fy16_完成签到,获得积分10
7秒前
大善人发布了新的文献求助10
8秒前
8秒前
9秒前
积极慕梅应助zengyiyong采纳,获得10
10秒前
10秒前
10秒前
ZZRR发布了新的文献求助10
11秒前
11秒前
11秒前
zjx0925完成签到,获得积分10
11秒前
11秒前
研友_VZG7GZ应助大善人采纳,获得10
11秒前
么么哒荼蘼酱完成签到,获得积分10
11秒前
12秒前
Jasper应助自由青柏采纳,获得10
12秒前
13秒前
13秒前
13秒前
xss发布了新的文献求助10
14秒前
LennonYin发布了新的文献求助10
14秒前
14秒前
14秒前
tt完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721