Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘿嘿应助陈研生采纳,获得10
1秒前
Lasse发布了新的文献求助10
2秒前
眯眯眼的宛白完成签到,获得积分20
4秒前
6秒前
我崽了你发布了新的文献求助30
7秒前
8秒前
fanf完成签到,获得积分10
9秒前
完美世界应助mayun95采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
ashin17发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助cxw采纳,获得10
15秒前
15秒前
呼噜呼噜毛完成签到 ,获得积分10
17秒前
17秒前
烟花应助QinQin采纳,获得10
17秒前
JamesPei应助猪猪hero采纳,获得10
18秒前
18秒前
19秒前
黄颖完成签到,获得积分10
19秒前
21秒前
22秒前
CodeCraft应助Nora采纳,获得10
23秒前
灵巧帽子发布了新的文献求助20
24秒前
小吴同学发布了新的文献求助10
26秒前
黄芪2号完成签到,获得积分10
26秒前
26秒前
26秒前
Jes完成签到,获得积分10
27秒前
凶狠的棒棒糖关注了科研通微信公众号
27秒前
谦让雨柏完成签到 ,获得积分10
27秒前
27秒前
28秒前
28秒前
黄芪2号发布了新的文献求助10
29秒前
微笑翠桃发布了新的文献求助10
30秒前
浅蓝色的盛夏完成签到 ,获得积分10
31秒前
wen完成签到,获得积分10
31秒前
张123完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716