A novel multimodality based dual fusion integrated approach for efficient and early prediction of glaucoma

人工智能 计算机科学 随机森林 水准点(测量) 机器学习 支持向量机 特征(语言学) 多模态 深度学习 分类 青光眼 集成学习 模式识别(心理学) 医学 语言学 大地测量学 万维网 眼科 地理 哲学
作者
Law Kumar Singh,Munish Khanna,. Pooja
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103468-103468 被引量:15
标识
DOI:10.1016/j.bspc.2021.103468
摘要

As there is currently no exact treatment for glaucoma, early detection and diagnosis are essential to reduce the risk of this infection. In recent years, Machine learning and deep learning has significantly improved prediction and classification of human diseases. We are the first to offer a new multimodal approach for glaucoma prediction in this article. We shortlisted three public datasets and in totality we tested seven combinations of these datasets. Initially, we created five multimodal representations of each publicly accessible benchmark dataset. In the first vertical, we extracted 36 critical features from each multimodal of a particular dataset. These extracted features are subsequently fused (referred to as early fusion) to create each dataset's 180 features. These 180 features are ranked using random forest. The top 50% of the features are retrieved to create a feature vector. This feature vector is fed into different machine learning classifiers and their ensemble model for classification purposes. In the second vertical, we worked at the picture level where we send images from each dataset's five multimodal dimensions to two deep learning methods for classification purposes. For each of the seven experiments conducted in this study we obtain several sets of findings. These categorization findings are combined (referred to as late fusion) and submitted to professional ophthalmologists who make the final determination based on their judgments. As a consequence of the proposed approach, we now have a computerized glaucoma diagnostic system with remarkable results (accuracy upto 95.56%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助涔雨采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得20
刚刚
刚刚
清风应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
1秒前
hbhbj发布了新的文献求助10
1秒前
我是老大应助Edward采纳,获得10
2秒前
浮萍发布了新的文献求助10
3秒前
Zoe应助小狒狒采纳,获得20
3秒前
Apple发布了新的文献求助10
4秒前
4秒前
小叮当完成签到,获得积分10
4秒前
4秒前
5秒前
汉堡包应助Allis采纳,获得10
5秒前
7秒前
还单身的语薇完成签到 ,获得积分10
8秒前
8秒前
今天我瘦了吗完成签到,获得积分10
10秒前
左丘如萱发布了新的文献求助10
10秒前
和老爹豆豆完成签到,获得积分20
10秒前
香蕉觅云应助波波采纳,获得10
10秒前
hbhbj发布了新的文献求助10
10秒前
DondeDu给DondeDu的求助进行了留言
10秒前
秋澄发布了新的文献求助10
10秒前
林间清晨完成签到 ,获得积分10
11秒前
小小怪完成签到 ,获得积分10
12秒前
12秒前
14秒前
小叮当发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
李乾坤完成签到,获得积分10
16秒前
tt发布了新的文献求助10
16秒前
17秒前
浮游应助小芦铃采纳,获得10
17秒前
Edward完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058