A novel multimodality based dual fusion integrated approach for efficient and early prediction of glaucoma

人工智能 计算机科学 随机森林 水准点(测量) 机器学习 支持向量机 特征(语言学) 多模态 深度学习 分类 青光眼 集成学习 模式识别(心理学) 医学 万维网 地理 哲学 眼科 语言学 大地测量学
作者
Law Kumar Singh,Munish Khanna,. Pooja
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103468-103468 被引量:15
标识
DOI:10.1016/j.bspc.2021.103468
摘要

As there is currently no exact treatment for glaucoma, early detection and diagnosis are essential to reduce the risk of this infection. In recent years, Machine learning and deep learning has significantly improved prediction and classification of human diseases. We are the first to offer a new multimodal approach for glaucoma prediction in this article. We shortlisted three public datasets and in totality we tested seven combinations of these datasets. Initially, we created five multimodal representations of each publicly accessible benchmark dataset. In the first vertical, we extracted 36 critical features from each multimodal of a particular dataset. These extracted features are subsequently fused (referred to as early fusion) to create each dataset's 180 features. These 180 features are ranked using random forest. The top 50% of the features are retrieved to create a feature vector. This feature vector is fed into different machine learning classifiers and their ensemble model for classification purposes. In the second vertical, we worked at the picture level where we send images from each dataset's five multimodal dimensions to two deep learning methods for classification purposes. For each of the seven experiments conducted in this study we obtain several sets of findings. These categorization findings are combined (referred to as late fusion) and submitted to professional ophthalmologists who make the final determination based on their judgments. As a consequence of the proposed approach, we now have a computerized glaucoma diagnostic system with remarkable results (accuracy upto 95.56%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
烤肠发布了新的文献求助10
5秒前
zydxyx完成签到,获得积分10
5秒前
123关闭了123文献求助
6秒前
6秒前
寻道图强应助Xin采纳,获得30
6秒前
李大柱完成签到,获得积分10
7秒前
科研通AI2S应助烤肠采纳,获得10
8秒前
JamesPei应助烤肠采纳,获得10
8秒前
9秒前
11秒前
标致溪流发布了新的文献求助10
14秒前
15秒前
16秒前
香蕉觅云应助lobster采纳,获得10
17秒前
科研通AI2S应助小志采纳,获得10
18秒前
JXC完成签到,获得积分10
18秒前
若离完成签到,获得积分10
19秒前
volvoamg发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
胥风完成签到,获得积分10
21秒前
月落杉松晚完成签到,获得积分10
21秒前
科研通AI2S应助大胖采纳,获得10
22秒前
22秒前
22秒前
正在发布了新的文献求助10
24秒前
兜兜完成签到 ,获得积分10
24秒前
爆米花应助自然的南露采纳,获得10
25秒前
若离发布了新的文献求助10
26秒前
26秒前
科研通AI2S应助niyl采纳,获得10
27秒前
侯天宇发布了新的文献求助10
27秒前
克利夫兰发布了新的文献求助10
28秒前
小蘑菇应助仇丹秋采纳,获得30
28秒前
000完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112