A novel multimodality based dual fusion integrated approach for efficient and early prediction of glaucoma

人工智能 计算机科学 随机森林 水准点(测量) 机器学习 支持向量机 特征(语言学) 多模态 深度学习 分类 青光眼 集成学习 模式识别(心理学) 医学 语言学 大地测量学 万维网 眼科 地理 哲学
作者
Law Kumar Singh,Munish Khanna,. Pooja
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103468-103468 被引量:15
标识
DOI:10.1016/j.bspc.2021.103468
摘要

As there is currently no exact treatment for glaucoma, early detection and diagnosis are essential to reduce the risk of this infection. In recent years, Machine learning and deep learning has significantly improved prediction and classification of human diseases. We are the first to offer a new multimodal approach for glaucoma prediction in this article. We shortlisted three public datasets and in totality we tested seven combinations of these datasets. Initially, we created five multimodal representations of each publicly accessible benchmark dataset. In the first vertical, we extracted 36 critical features from each multimodal of a particular dataset. These extracted features are subsequently fused (referred to as early fusion) to create each dataset's 180 features. These 180 features are ranked using random forest. The top 50% of the features are retrieved to create a feature vector. This feature vector is fed into different machine learning classifiers and their ensemble model for classification purposes. In the second vertical, we worked at the picture level where we send images from each dataset's five multimodal dimensions to two deep learning methods for classification purposes. For each of the seven experiments conducted in this study we obtain several sets of findings. These categorization findings are combined (referred to as late fusion) and submitted to professional ophthalmologists who make the final determination based on their judgments. As a consequence of the proposed approach, we now have a computerized glaucoma diagnostic system with remarkable results (accuracy upto 95.56%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
刚刚
YufanZhang完成签到,获得积分10
刚刚
传奇3应助余欣采纳,获得10
刚刚
刚刚
刚刚
刚刚
饱满夏瑶完成签到,获得积分10
1秒前
1秒前
隐形曼青应助flysky120采纳,获得10
1秒前
CNSSCI完成签到,获得积分10
1秒前
CipherSage应助朝暾采纳,获得10
2秒前
3秒前
鸽子发布了新的文献求助10
3秒前
4秒前
黄淮科研小白龙完成签到 ,获得积分10
4秒前
4秒前
瘦瘦青荷完成签到,获得积分10
4秒前
甜甜的觅夏完成签到,获得积分10
4秒前
百里丹珍发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
深情安青应助临界采纳,获得10
5秒前
LW完成签到,获得积分10
5秒前
Mystic发布了新的文献求助10
5秒前
亚婷儿完成签到,获得积分10
6秒前
AQ完成签到,获得积分10
6秒前
YufanZhang发布了新的文献求助10
7秒前
7秒前
迅速的巧曼完成签到 ,获得积分10
7秒前
7秒前
7秒前
专注无声发布了新的文献求助10
8秒前
饱满夏瑶发布了新的文献求助10
8秒前
Pursuit发布了新的文献求助10
8秒前
华仔应助ying采纳,获得10
9秒前
9秒前
解语花发布了新的文献求助10
9秒前
醒醒发布了新的文献求助10
9秒前
浮游应助ldroc采纳,获得10
9秒前
Yang2完成签到,获得积分10
10秒前
beyond发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978